
University of Dublin

TRINITY COLLEGE

	Software Repository Code Assessment for Team and
Individual Socio-Metric Performance Prediction

Edmond Michael O’ Flynn

B.A.I. Engineering

Final Year Project May 2017
Supervisor: Professor Stephen Barrett

School of Computer Science and Statistics

O’Reilly Institute, Trinity College, Dublin 2, Ireland

	 2	

DECLARATION

I hereby declare that this project is entirely my own work and that it has not been submitted

as an exercise for a degree at this or any other university

__ ________________________

Name Date

05/05/2017	

ACKNOWLEDGEMENTS	
	

	

	

	

	

	

	

	

Many	thanks	to	Professor	Stephen	Barrett	for	the	help,	support,	and	many	interesting	meetings	over	
the	course	of	this	project.	You	are	a	great	wealth	of	information	and	an	inspiration	to	becoming	a	

software	engineer.	

To	my	parents,	Olive	and	Michael,	I	can’t	express	enough	thanks	for	giving	me	the	opportunities	that	
you	never	had.	I	wouldn’t	be	in	my	position	today	if	it	hadn’t	been	for	your	sacrifices.	

To	my	sister,	Deirdre,	thanks	for	everything	over	from	childhood	to	today	and	beyond.	You	helped	me	
adjust	to	living	in	a	new	city	and	have	always	been	there	for	me	at	every	turn.	

As	gach	rud,	táim	fíor-bhíoch	daoibh.	Go	raibh	maith	agaibh	uilig	ó	mo	chroí	istigh.	 	

	 4	

TABLE	OF	CONTENTS	

ACKNOWLEDGEMENTS	 3	

LIST	OF	FIGURES	 6	

ABSTRACT	 8	

INTRO	 9	

MOTIVATION	 9	
OBJECTIVES	 10	
REPORT	OUTLINE	 10	
STATE	OF	THE	ART	 10	
DESIGN	 10	
IMPLEMENTATION	 10	
EVALUATION	AND	FUTURE	WORK	 10	
CHALLENGES	 10	

STATE	OF	THE	ART	 11	

BACKGROUND	 11	
HALSTEAD	METRICS	 11	
DERIVED	HALSTEAD	METRICS	 12	
CODE	CHURN	 15	
ABSTRACT	GRAPH	DATA	TYPE	 16	
MCCABE	COMPLEXITY	 17	
DEPTH-FIRST	SEARCH	 18	
MAINTAINABILITY	INDEX	 18	
MODULARITY	 19	

DESIGN	 20	

BOTTOM-UP	METHODOLOGY	 20	
SYSTEM	TOPOLOGY	 21	
GIT	VERSION	CONTROL	 22	
LANGUAGE	CHOICES	 22	
DESIGN	PATTERNS	 23	
PROGRAMMATIC	ANALYSIS	 24	
OPEN	SOURCE	SOFTWARE	 25	
DOCUMENTED-ORIENTED	STORAGE	 25	
DISTRIBUTED	CLOUD	COMPUTING	 27	
SECURITY	CONSIDERATIONS	 27	

IMPLEMENTATION	 30	

OPERATIONAL	DETAILS	 30	
DATA	VISUALISATION	 32	

	 5	

PERFORMANCE	CHARACTERISTICS	 33	
JOIN-TIME	V	CONTRIBUTION	QUANTITY	 33	
ADOPTION	SNOWBALLING	V	COMPLEXITY	 34	
STAGES	OF	REPO	COMPLEXITY	 34	
SLOC	V	COMPLEXITY	 35	

EVALUATION	 36	

JOIN-TIME	V	CONTRIBUTION	QUANTITY	 36	
ADOPTION	SNOWBALLING	V	COMPLEXITY	 38	
STAGES	OF	REPO	COMPLEXITY	 40	
SLOC	V	COMPLEXITY	 43	

CONCLUSION	AND	FUTURE	WORK	 45	

INTENDED	END-USER	 45	
RISK	FACTORS	 45	
FUTURE	WORK	 45	
VERIFICATION	TECHNIQUES	 46	
CONCLUSION	 46	

BIBLIOGRAPHY	 47	

ELECTRONIC	CD	RESOURCE	 50	

	

	

	 	

	 6	

LIST	OF	FIGURES	

Figure	1	Aggregation	of	metrics	across	domains	 ___	11	

Figure	2	A	3-node	directed-graph	___	16	

Figure	3	(a)	if-then-else	loop	(b)	while	loop	(c)	while	with	sentinel	(d)	for	loop	__________________	17	

Figure	4	Design	process	generalisation	___	20	

Figure	5	System	topology	___	21	

Figure	6	MVC	architecture	illustration	 ___	23	

Figure	7	Sample	maintainability	index	data	for	commit	c7e0b0f	_____________________________	24	

Figure	8	Sample	Raw	LOC	Data	for	Commit	c7e0b0f	 ______________________________________	26	

Figure	9	Refactored	Server-Side	Generation	to	LOC	Aggregation	to	Commit	c7e0b0f	 ____________	26	

Figure	10	Sample	Commit	in	JSON	with	a	Redacted	Name	and	Email	_________________________	28	

Figure	11	Progression	of	a	Job	Dispatch	over	a	Repository	(Keras)	 ___________________________	30	

Figure	12	Example	Job	Progression	and	Options	for	Graphs	 ________________________________	31	

Figure	13	Sample	Metric	of	Cyclomatic	Complexity	_______________________________________	32	

Figure	14	High	Volume	of	Data	Delivered	with	a	High	Wait	Time	 ____________________________	33	

Figure	15	Repository	Maturity	over	Time	___	34	

Figure	16	Demarcated	mature	stage	progression___	35	

Figure	17	Join	time	of	collaborators	versus	the	contribution	size	in	commits	___________________	36	

Figure	18	More	clustering	patterns	for	contributors	versus	contribution	sizes	__________________	37	

Figure	19	An	interesting	effect	of	a	project	handover	between	core	developers	 ________________	37	

Figure	20	Exponential	contributor	join	___	38	

Figure	21	A	stagnating	repository	with	8	contributors	_____________________________________	39	

Figure	22	Differing	join	distribution	(mongo)	__	39	

Figure	23	Another	collaborator	join	distribution	(eve)	_____________________________________	40	

Figure	24	Distinct	areas	of	differing	LOC	change	per	maturity	level	___________________________	40	

Figure	25	Demarcated	mature	repo	level	___	41	

Figure	26	Normalised	complexities	over	time	across	9	repositories	 __________________________	42	

	 7	

Figure	27	Highest	contributor	from	join	time	appearing	in	the	bottom	right	 ___________________	43	

Figure	28	Two	highest	contributors	from	join	time	in	the	bottom	right	________________________	44	

Figure	29	Highest	contributor	from	join	time	in	the	bottom	right	____________________________	44	

	 	

	 8	

ABSTRACT	

Software	 development	 has	 captured	 the	world	 of	 today	with	 its	 prevalence	 in	 everyday	 life.	 	With	
advancements	in	computing,	a	change	has	been	brought	about	in	how	we	use	electronics	to	facilitate	
everyday	tasks	in	our	lives.	This	bring	about	the	question	of	the	role	of	the	software	engineer	and	its	
deep	 importance	 in	 developing	 and	 maintaining	 our	 domain	 of	 existence.	 Software	 engineering	
pertains	 to	 the	 design,	 development,	 and	 testing	 of	 system	 applications	 in	 a	 systematic	 approach.	
However,	there	is	a	large	dynamic	spectrum	on	which	a	skillset	of	an	engineer	can	lie,	where	these	skills	
can	become	more	developed	and	honed	with	time	and	exposure.	

To	understand	how	large-scale	software	engineering	projects	come	into	fruition,	we	must	first	look	at	
the	path	of	evolution	taken	from	their	initial	conception	of	the	project	to	their	current	state.	By	using	
a	revision	control	system	such	as	Git,	it’s	possible	to	iterate	through	commit	snapshots	to	analyse	the	
series	of	steps	taken	to	arrive	at	the	current	stage	of	development.	It	is	these	snapshots	that	allows	for	
a	temporal	axis	to	be	generated,	on	which	observable	shifts	and	patterns	can	be	reviewed	and	used	to	
analytically	generate	meaningful	metrics.	These	metrics	can	show	in	depth	how	members	of	a	team	
interact	with	the	source	code	of	a	repository,	and	thereby	allows	for	metrics	pertaining	to	technical,	
social,	and	organisational	kinks	and	mannerisms	to	be	observed	more	clearly	on	a	graph	over	time.	

This	project	aims	to	develop	a	minimally	viable	suite	of	tools	to	solve	the	challenge	of	being	unable	to	
explore	and	generate	data	sets	for	given	projects.	Expanding	on	this	provides	a	systematic	approach	to	
software	engineering	with	the	means	to	allow	for	exploration	of	the	cohesion	of	contributions	in	open-
source	software	repositories,	and	generate	metrics	accordingly	to	demonstrate	the	differentiation	in	
quality	of	 individuals’	work	 towards	a	shared	goal	of	creating	software.	The	hope	 is	 to	more	clearly	
examine	and	observe	the	given	effects	of	varying	stimuli	on	the	individual’s	contribution	level.		

The	intended	end-user	for	this	platform	is	be	a	data	scientist	who	is	interested	in	generating	metrics	
about	the	potential	effects	and	states	of	varying	methodologies	and	practices	of	software	development	
paradigms.	 The	 net	 result	 of	 this	 is	 the	 integration	 into	 continuous	 systems	 for	 socio-metric	
performance	disposition	to	analytically	see	over	a	large	set	of	data	the	most	optimal	way	for	developers	
to	work	on	a	project	in	tandem.	The	results	of	the	project	can	be	summarised	as	to	have	shown	a	clear	
starting	 point	 for	 metrics	 observed	 from	 the	 system	 to	 infer	 certain	 behaviours	 result	 from	 given	
engagements.	Future	progress	may	uncover	interesting	shifts	in	modern	software	development	cycles	
in	the	scope	of	interesting	properties	associated	with	engineering	processes	across	individual	and	team	
efforts.	Overall,	there	is	a	clear	potential	for	large	open-source	software	repositories	to	follow	distinct	
stages	of	maturity	as	per	complexity,	with	varying	roles	of	contribution	ranging	from	a	major	addition	
of	features,	to	those	of	less	frequent	additions.		

The	context	of	this	is	to	highlight	the	effects	of	a	set	of	contributions	over	time,	and	the	overall	effects	
that	large	groups	of	software	engineers	to	varying	degrees	of	competency	can	have	on	the	overall	scope	
of	the	project	and	the	complexity	variations	that	ensue.	With	the	consideration	of	modern	practices	of	
open-sourcing	software	repositories,	eliciting	the	help	of	many	has	become	a	regular	practice	where	
anyone	can	donate	progression	in	the	form	of	a	feature,	bug	fix,	or	code	review	through	a	pull	request	
has	become	the	norm.	This	has	led	to	a	certain	culture	of	working	with	large	groups	of	other	people	in	
a	 purely	 virtual	manner	 –	with	 interactions	 stretching	 to	 logging	 and	 assigning	 issues,	 and	working	
together	to	create	agnostic	code	that	works	together	in	a	seamless	mesh.	 	

	 9	

INTRO	

MOTIVATION	
Software	 design	 is	 defined	 as	 “all	 the	 activity	 involved	 in	 conceptualizing,	 framing,	 implementing,	
commissioning,	and	ultimately	modifying	complex	systems”.	(Freeman	&	Hart,	2004)	As	it	is	built	upon	
making	tools	for	others,	it	therefore	seems	ironic	that	gauging	this	sense	of	progression	is	difficult	to	
evaluate	empirically	through	analysis	software	for	engineers	themselves.	In	organisations,	departments	
have	goals	 to	achieve	 through	 some	 form	of	metrics	–	 teams	dealing	with	 sales	must	 sell	 a	 certain	
quantity	of	stock,	leaders	have	goals	set	out,	but	software	engineering	teams	have	a	general	goal	of	
shipping	software	by	a	certain	deadline.	It	then	seems	that	this	process	isn’t	transparent	in	terms	of	
metrics.	What	level	of	quality	defines	shippable?	How	should	a	team	deal	with	technical	debt?	

Progression	in	software	development	is	not	only	difficult	to	empirically	gauge,	but	is	partially	based	on	
elements	of	human	metrics.	The	goal	of	everyone	in	the	team	is	to	foster	progression	and	experience	
a	 sense	of	getting	closer	 to	 reaching	a	milestone	of	development.	 Leaders	within	 fields	of	 software	
engineering	have	the	difficult	task	of	discovering	the	current	state	of	play	for	developers	in	the	team.	
Simple	questions	 relating	 strives	 forward	being	made	can	be	notoriously	difficult	 to	answer	–	what	
defines	 enough	 progress?	 What	 differentiates	 between	 progress	 from	 narratives	 of	 greenhorn	
engineers	to	the	field,	to	those	well-seasoned?	

The	initial	purpose	of	this	report	is	to	outline	the	steps	needed	to	provide	a	tool-chain	of	deployable	
infrastructure	to	provide	a	method	of	acquiring,	generating,	and	exploring	data	sets.	The	severe	lack	of	
tools	for	leveraging	as	a	method	of	exploration	within	this	field	led	initially	to	the	challenging	goals	of	
creating	a	semi-automated	process	across	a	system	topology	to	readily	acquire	open-source	projects	
from	GitHub	and	generate	data	sets	for	the	consumption	by	data	visualisation	tools.	The	infrastructure	
must	 then	 run	 processes	 for	 generating	 original	 data	 sets	 of	 useful	metrics	 across	 the	 repositories	
gathered,	so	that	information	may	be	harvested	and	providing	the	basis	for	any	investigations	into	the	
analysis	of	individual	and	team	based	software	repository	socio-metric	code	analysis.	

Building	on	the	challenging	task	of	providing	a	basis	infrastructure	to	generate	the	required	data	sets,	
the	next	goal	of	this	report	is	to	explore	the	area	of	software	code	repository	analysis	for	human	metrics	
in	relation	to	code	over	time	as	developers	contribute	to	a	code	base.	As	code	is	a	representation	of	
the	 contributions	 of	 an	 engineer,	 there	 is	 a	 clear	 investigative	 side	 to	 the	 qualitative	 analysis	 to	
differentiate	 between	 discrete	 varying	 skillsets	 on	 the	 software	 development	 spectrum	of	 problem	
solving	 and	 contributions.	 As	 the	 topic	 of	 research	 is	 based	 on	 the	 interest	 in	 the	 human	metrics	
involved,	 and	 not	 simple	 code	 analysis	 itself,	 the	 goals	 set	 out	 lie	within	 the	 analysis	 of	 qualitative	
methodologies	with	selective	analysis	to	observe	patterns	of	software	design	within	a	team.		

The	overall	aim	is	to	create	a	suite	of	toolsets	to	facilitate	the	mining	of	meaningful	data	to	more	clearly	
define	the	varying	attributes	of	developers	in	a	project	without	a	pure	focus	on	repository	mining	alone.	
Having	acquired	sets	of	metrics	about	mined	 repositories,	a	qualitative	analysis	 is	done	 to	combine	
technical	and	expert	systems	analysis,	and	validate	the	initial	results	of	a	non-statistical	exploration	via	
the	tool-set.	The	aims	of	this	are	to	provide	a	solid	foundation	for	future	work	within	the	scope	of	the	
area	as	a	means	for	expansion	for	interesting	potential	correlations	between	code	metrics.	

	 	

	 10	

OBJECTIVES	
The	ultimate	objective	of	this	research	project	is	to	determine	patterns	of	qualities	residing	in	software	
development,	 and	 generalise	 systematically	 across	 large	 datasets	 obtained	 from	 real-life	 repository	
analysis.	As	this	is	an	extremely	general	set	of	requirements,	the	following	is	a	terser	set	of	guidelines	
to	follow:	

• The	infrastructure	must	be	initially	be	built	as	a	basis	for	data-set	generation		
• The	infrastructure	should	be	as	modular	as	possible		
• The	infrastructure	should	generate	metrics	per	repository	on	a	per	commit	basis	
• The	infrastructure	should	visualise	data	generated	meaningfully	on	graphs	
• The	infrastructure	should	show	clear	trends	about	the	state	of	a	repository		
• The	infrastructure	should	relate	these	data	to	human	metrics	of	contribution	quality	
• The	infrastructure	should	allow	a	user	to	submit	a	repository	for	digestion	

REPORT	OUTLINE	
This	report	consists	of	several	chapters	as	outlined	below	that	form	the	arguments	set	out	within	this	
final	year	project	dissertation:	

STATE	OF	THE	ART	
Chapter	2	introduces	the	background	of	the	problem	space.	It	sets	out	the	current	state	of	research	
within	the	area	of	code	analysis	metrics	and	the	expansion	of	their	use	on	a	wider	scope.	

DESIGN	
Chapter	3	sets	out	 in	detail	 the	design	and	thought	process	 for	 the	methodology	and	design	of	 the	
system	on	a	global	scope.	Initially,	the	chapter	starts	out	explaining	the	context	of	the	overall	system,	
and	 then	proceeds	 to	go	 into	an	experimentally	 focused	explanation	of	 the	design	of	 the	 sufficient	
components	for	the	tool	chain	infrastructure	as	expanded	upon	in	chapter	4.	

IMPLEMENTATION	
Chapter	4	sets	out	in	a	greater	scope	what	is	meant	by	the	digestion	pipeline	and	representation	of	
huge	amounts	of	data,	and	the	operational	details	that	follow	in	generating	details	about	the	operation.	
Usages	and	relationships	of	the	tool	chain	are	discussed	in	practical	analysis,	and	then	diverges	into	the	
area	of	the	inferences	for	performance	characteristics	of	these	components.	

EVALUATION	AND	FUTURE	WORK	
The	 final	 chapters,	 chapters	 5	 and	 6,	 present	 inferences	 and	 conclusions	 pertaining	 to	 the	 project,	
dealing	 in-depth	with	areas	of	 interest	 to	 take	away	 from	socio-metrics	within	 the	 field	of	software	
engineering,	and	considerations	for	future	work	relating	to	this	project.	

CHALLENGES	
Throughout	the	project	there	was	a	constant	challenge	of	a	severe	lack	of	infrastructure	for	generating	
appropriate	metrics	and	analysing	repositories	to	fully	satisfy	the	needs	of	this	project.	Due	of	this	lack	
of	tool-chains	being	readily	available,	there	was	the	additional	challenge	of	creating	an	infrastructure	
working	together	in	tandem	to	attain	an	automated	system	of	Git	repository	digestion	and	analysis.	In	
addition	 to	 this,	 there	was	 the	challenge	of	generating	data	 sets	using	 the	 toolchain,	and	having	 to	
explore	for	possible	correlations	in	metrics	without	a	known	outcome	beforehand.		 	

	 11	

STATE	OF	THE	ART	

This	chapter	is	the	basis	literature	pertaining	to	this	branch	of	software	engineering	data	science	for	
qualifying	and	quantifying	metrics	associated	with	code	analysis.	Main	areas	of	interest	are	set	out	as	
per	Halstead,	McCabe,	and	the	concept	of	a	maintainability	index;	which	are	contextually	shown	later	
in	chapters	3	and	4	as	per	 the	 tool-chain	developed	 for	code	analysis.	The	aim	of	 this	chapter	 is	 to	
define	 and	 show	 the	 engineering	 challenges	 considered	 for	 devising	 and	 developing	 a	 tool-set	 for	
mining	and	analysing	data-sets	of	arbitrary	software	repositories.	

BACKGROUND	
Metrics	within	software	engineering	come	as	part	of	the	analysis	and	dimensionality	of	the	structure	
and	size	of	a	given	project	scope	to	a	known	domain,	defined	formally	as	“a	qualitative	measure	of	the	
degree	to	which	a	system,	component,	or	process	possesses	a	given	variable.”.		(IEEE,	1990)	

Metrics	give	a	set	of	classifications	 to	aide	 in	differentiating	qualities	of	code	repositories	 from	one	
another.	While	the	overall	aggregate	of	software	lines	of	code	(SLOC)	is	a	general	measure	of	the	size	
of	a	program	excluding	comment	lines,	it	gives	no	overall	classification	of	the	designated	quality	of	the	
code	 being	 implemented,	 whether	 it’s	 overly	 complex,	 or	 given	 qualities	 of	 redundancy	 being	
contributed.	(Nguyen,	et	al.,	2007)	Given	this	inherent	ignoring	of	the	structure	of	the	program,	this	
gives	 rise	 to	 other	 more	 in-depth	 metrics	 for	 ascertaining	 more	 information	 about	 the	 relative	
functionality	as	a	unit	of	measurement	for	classification.	

	

	

FIGURE	1	AGGREGATION	OF	METRICS	ACROSS	DOMAINS	(SEREBRENIK,	2011)	

HALSTEAD	METRICS	
Halstead	metrics	are	an	approach	to	make	empirical	and	educated	guesses	about	the	current	state	of	
a	program	by	inferring	certain	software	metrics	about	it	under	the	domain	of	the	amount	or	degree	of	
functionality.	 (Halstead,	1977)	The	measures’	 goal	 is	 always	 to	 remain	 language	agnostic,	 and	 refer	
specifically	to	properties	and	relations	attainable	within	software.	Halstead	metric	analysis	results	in	a	
set	of	metrics	that	not	only	relate	to	the	overall	complexity	of	a	program	(as	per	section	2.5	McCabe	

	 12	

complexity),	but	also	to	a	set	of	properties	with	some	measurable	relations	among	them	for	inferring	
further	suppositions.	

Stemming	from	research	done	in	1977,	Halstead	metrics	aim	to	give	a	further,	more	in-depth	insight	
into	counting	the	amount	of	unique	and	used	operators	and	operands	within	a	program.	The	overall	
aim	 of	 Halstead	 metrics	 is	 to	 infer	 more	 information	 rationally	 about	 a	 program	 over	 the	 easily	
calculable	software	lines	of	code	metric	(SLOC)	–	ascertainable	simply	by	counting	the	lines	of	code	in	
a	 program,	 but	 lacks	 any	 real	 insight.	 (Halstead,	 1977)	 The	 Halstead	 metrics	 domain	 has	 several	
properties	derived	from	a	measurable	index	of	code	declarations	within	given	scopes.	These	properties	
exist	within	four	groups:	the	distinct	number	of	operators	(𝜂"),	distinct	number	of	operands	(𝜂#),	overall	
number	of	operators	as	an	instance	(𝑁"),	and	overall	number	of	operands	as	an	instance	(𝑁#).		

A	distinct	operator	defines	the	mapping	of	use	for	an	attribute	such	that	an	endomorphism	is	defined	
as	that	of	the	defining	feature	of	an	attribute.	This	can	be	the	data	type	of	a	strongly	typed	language,	
the	name	of	a	function,	encapsulating	symbols	for	specific	use	such	as	brackets;	corresponding	to	verbs,	
syntax,	and	elements	that	are	not	data.	

A	distinct	operand	is	the	attribute	which	receives	interactions	by	operands	–	resulting	in	their	use	in	
functions	and	being	manipulated	for	data	storage	and	representation	accordingly.		

The	overall	number	of	instances	for	both	operands	and	operators	is	calculated	by	summating	the	total	
amount	of	each.	This	corresponds	to	being	a	variable,	constant,	literal	or	expression.	Take	the	following	
example	C	program	for	computing	the	average	of	four	inputs:	

int main(void) {
 int a, b, c, d, average;
 scanf("%d %d %d %d", &a, &b, &c, &d);
 average = (a + b + c + d) / 4;
 printf("average = %d", average);
 return 0;
}

The	output	of	tokenizing,	given	the	individual	operands	and	operators	within	the	above	program,	
would	result	in	the	following	outputs.	The	distinct	operators	in	this	segment	would	be	comprised	of	
such,	given	that	the	function	definition	and	the	encapsulating	braces	for	it	are	ignored:		

int	 scanf	 ;	 &	 =	 +	 /	 average	 printf	 return	

The	distinct	operands	in	this	segment	would	then	be:	

a	 b	 c	 d	 average	 “%d	%d	%d	%d”	 4	 “average	=	%d”	 0	

	

DERIVED	HALSTEAD	METRICS	
Halstead	metrics	build	on	the	base	idea	of	operands	and	operators	thereby	giving	a	deeper,	more	
meaningful	estimate	of	properties	associated	with	software	development	processes	that	are	directly	
consistent	with	effort	required	with	source	code	over	7	derived	metrics	(VirtualMachinery,	n.d.):		

Vocabulary	(n):	𝜂" + 𝜂#	

	 13	

Vocabulary	is	defined	as	the	overall	summation	of	individual	operands	and	individual	operators.	The	
resultant,	n,	is	an	integer	that	corresponds	heavily	with	the	given	amount	of	lines	of	code	within	the	
program.	It	gives	a	greater	insight	into	the	minimum	amount	of	understanding	needed	to	understand	
the	program	in	full.	(VirtualMachinery,	n.d.)	

Program	Size	(N):	𝑁" + 𝑁#	

Program	size	 is	derived	 from	the	 total	number	of	overall	operands	and	 the	 total	number	of	overall	
operators	summated	together.	This	property	gives	an	overall	sense	of	the	length	of	the	program	being	
analysed.	(VirtualMachinery,	n.d.)	

Program	Volume	(V):	𝑁 ∗ log# 𝑛	

The	volume	of	a	program	is	generally	taken	to	be	the	absolute	size	of	the	program.	A	general	rule	of	
thumb	for	estimating	the	correct	volume	is	that	within	an	observed	function	should	encompass	the	
scope	of	20 ≤ 𝑉 ≤ 1000,	while	the	volume	of	an	observed	file	should	encompass	a	 larger	range	of	
100 ≤ 𝑉 ≤ 8000	due	to	the	increased	amount	of	functions	residing	within	a	file.	(Serebrenik,	2011)	

Program	Difficulty	(D):	12∗34
#	∗	14

	

Difficulty	 is	 a	 representation	 of	 the	 operators’	 and	 operands’	 given	 uniqueness	 and	 total	 usages	
together.	(Serebrenik,	2011)	

Effort	Required	(E):	𝑉 ∗ 𝐷	

Effort	is	a	derived	estimation	at	the	amount	of	difficulty	observed	with	interpreting	the	implementation	
of	the	code	within	a	program.	(Serebrenik,	2011)	

Bugs/Errors	Expected	(B):	 7
8999

	

Errors	are	derived	as	an	estimation	to	the	number	of	bugs	residing	in	a	program	proportionally	to	effort	
put	into	the	implementation	of	code.	(Serebrenik,	2011)	

Testing	Time	(T):	:
;
	

Testing	time	takes	an	arbitrary	variable	k	estimated	to	be	a	Stroud	number,	generally	having	the	value	
of	k=18.	This	number	is	dependent	upon	the	context	of	development	team,	considering	dependencies	
such	as	the	background	of	the	team,	criteria	of	criticality	level,	team	competency,	and	so	on.	The	value	
of	 this	 rises	 and	 falls	 depending	 on	 these	 factors,	 and	 so	 is	 estimated	 with	 some	 estimation	 and	
experience.	(VerifySoft,	n.d.)	The	testing	time	is	an	estimation	in	seconds	of	the	time	taken	necessary	
to	write	the	program	proportionally	to	effort	as	estimated	from	other	a	priori	influencing	factors.	

At	its	core,	Halstead	metrics	given	the	above	six	metrics,	as	building	blocks	to	infer	more	information	
about	a	software	project	and	its	contributors.	A	main	difference	observed	between	SLOC	and	Halstead	
complexity,	is	that	SLOC	doesn’t	take	unique	definitions	into	account	that	are	used	in	the	program’s	
execution	–	omitting	any	variable	and	definitions	that	remain	out	of	the	scope	of	use.	

The	following	is	a	code	excerpt	as	per	(Serebrenik,	2011):	

	 14	

void sort(int *a, int n) {
 int i, j, t;
 if (n<2)
 return;
 for (i=0; i<n-1; i++) {
 for (j=i+1; j<n; j++) {
 if (a[i]>a[j]) {
 t = a[i];
 a[i] = a[j];
 a[j] = t;
 }
 }
 }
}

With	 some	Halstead	 analysis	 on	 the	 above	 code	 segment,	 a	more	 insightful	 set	 of	metrics	may	 be	
generated.		Operators	and	operands	are	counted	like	the	following:	

Operators:	

3	 <	

	

5	 =	

	

1	 >	

1	 -	 2	 ,	 9	 ;	

4	 ()	 1	 return	 6	 []	

3	 {}	 1	 +	 1	 ++	

2	 for	 2	 if	 1	 int	

	

Operands:	

1	 0	

	

2	 1	

	

1	 2	

6	 a	 8	 i	 7	 j	

3	 n	 3	 t	 	 	

	

Resulting	properties:	

	 Total	 Unique	

Operators	 𝑁" = 50	 𝑛" = 17	

Operands	 𝑁# = 30	 𝑛# = 7	

	

This	 results	 in	 the	given	volume	of	 this	procedure	 to	be	𝑉 = 80 log#(24) ≈ 392,	which	 in	 turn	 lies	
within	the	scope	of	20 ≤ 𝑉 ≤ 1000;	satisfying	the	requirements	for	program	length.	(VerifySoft,	n.d.)	

	 15	

Values	of	the	other	derived	metrics	result	as	the	following:	

Expected	source	code	difficulty	(D):	12∗34
#	∗	14

≈ 36	

Expected	effort	(E):	𝑉 ∗ 𝐷 = 14112	
Estimated	time	to	understand	and	implement	(T):	 :

"F
= 784𝑠 ≈ 13	mins	

Expected	bugs	in	implementation	(B):	 7
8999

≈ 4.7	

CODE	CHURN	
Code	churn	is	the	analysis	of	how	source	files	change	over	time	through	observing	what	lines	of	code	
are	being	added,	removed,	or	modified.	It	is	a	net	measure	of	the	volatility	of	a	code	base	–	based	upon	
how	 frequently	 code	 is	 modified	 over	 time	 with	 code	 ownership.	 Code	 churn	 can	 have	 negative	
connotations	attached	 to	 its	analysis.	A	volatile	code	base	 represents	an	unclear	vision	of	what	 the	
future	 of	 the	 project	 is	 for	 developers	 working	 on	 it.	 Indecisiveness	 in	 a	 code	 base	 can	 be	 a	
representation	 of	 unclear	 specifications	 or	 waste	 occurring	 in	 time	 spent	 implementing	 certain	
features.	(Thompson,	2016)	

Volatility	also	takes	place	when	code	review	is	occurring.	This	can	be	because	of	discrepancies	in	coding	
standards	 imposed	 by	 engineers	 on	 the	 code	 base	 stemming	 from	 implemented	 features	 that	 are	
undergoing	 clean	 up,	 or	 unfinished	 features	 undergoing	 a	 review	 process.	 The	 net	 outcome	 is	
dependent	on	the	definition	of	what	the	team	expresses	“done”	to	be.	Code	can	naturally	vary	in	its	
quality,	with	higher	complexity	code	having	a	lower	readability	value;	and	segmented,	more	generified	
code	having	a	lower	complexity,	as	explained	in	greater	detail	in	section	2.5	on	McCabe	complexity.	

As	implementing	new	features	can	impose	a	high	churn	rate	in	pioneering	additional	functionality,	a	
potential	solution	for	mitigating	indecision	can	be	to	prototype	the	feature	through	multiple	paths	in	
an	exploratory	fashion.	Of	course,	churn	is	not	always	due	to	unimplemented	features,	but	can	also	be	
a	manifestation	of	 the	 current	mind	 set	 of	 the	engineer.	 Churn	 is	 an	 inverse	 representation	of	 the	
throughput	of	the	engineer	working	on	tasks.	Psychologically,	 if	 the	engineer	 is	experiencing	under-
engagement,	it	can	be	a	deeper	representation	of	burn-out	or	disengagement.	(Thompson,	2016)	

	 	

	 16	

ABSTRACT	GRAPH	DATA	TYPE	
A	program’s	structure	of	execution,	control	flow,	and	data	flow	are	generally	mapped	to	a	flow	graph	
data	type	in	the	form	of	nodes	and	directive	vertices	between	edges.	Following	this,	mapping	a	program	
as	such	results	in	graph-based	metric	expressions	to	follow.		

	

FIGURE	2	A	3-NODE	DIRECTED-GRAPH	(BOOYABAZOOKA,	2006)	

A	graph	 is	an	abstract	data	type	where	there	 is	a	given	start	point,	endpoint,	a	number	of	nodes,	a	
number	of	vertices,	and	a	given	maximum	depth	for	the	program	to	be	traversed	from	start	to	finish	of	
its	execution.	(Goodrich	&	Tamassia,	2001)	The	control	flow	graph	deduced	as	per	the	data	structure	is	
representative	 of	 the	 control	 flow	 path	 deduced	 by	 testing	 conditions	 within	 the	 program’s	 run.	
Operations	may	 not	 be	 immediately	 sequential,	 resulting	 in	more	 complex	 structures	 of	 orders	 of	
execution.	As	each	operation	is	reduced	to	a	node	within	the	graph,	the	connections	between	nodes	
can	be	thought	of	as	the	rate	of	complexity	of	flow	control.	There	may	be	several	possible	branches	
and	varying	paths	for	traversing	over	the	logic	of	the	program,	resulting	in	an	overall	differing	set	of	
complexities	 depending	 on	 the	 paths	 and	 pre-conditions	 chosen.	 This	 is	 known	 as	 the	 “cyclomatic	
complexity”	of	a	program’s	execution	–	with	individual	testing	metrics	associated	per	path.	

The	general	testing	metric	for	the	volume	of	a	graph	is	given	by	𝑉 𝐺 = #𝑒𝑑𝑔𝑒𝑠 − #𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 + 2.	A	
control	 flow	 graph,	 where	 decisions	 impact	 on	 the	 path	 chosen,	 is	 given	 by	
𝑉 𝐺 = #𝑏𝑖𝑛𝑎𝑟𝑦𝐶ℎ𝑜𝑖𝑐𝑒𝑠 + 1,	or	more	segmented	as	𝑉 𝐺 = #𝑖𝑓𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + #𝑙𝑜𝑜𝑝𝑠 + 1	where	
the	given	boundaries	for	graphs	are	𝑉 𝑓𝑢𝑛𝑐 ≤ 15	and	𝑉 𝑓𝑖𝑙𝑒 ≤ 100.	(Cormen,	et	al.,	2001)	

void sort(int *a, int n) {
 int i, j, t;
 if (n<2)
 return;
 for (i=0; i<n-1; i++) {
 for (j=i+1; j<n; j++) {
 if (a[i]>a[j]) {
 t = a[i];
 a[i] = a[j];
 a[j] = t;
 }
 }
 }
}

	 17	

The	 above	 function	 can	 be	 broken	 down	 structurally	 to	 determine	 more	 than	 just	 a	 Halstead	
tokenization	of	operands	and	operators.	By	simply	counting	the	quantity	of	if	conditions	with	respect	
to	their	quantity	of	pre-conditions	(2)	and	loops	(2)	within	the	fragment,	it	results	in	an	overall	volume	
testing	metric	of	5;	which	is	within	the	boundary	for	structural	complexity	of	15	for	a	function.

MCCABE	COMPLEXITY	
McCabe	cyclomatic	complexity	is	a	quantitative	metric	that	aims	to	reduce	metrics	of	code	complexity	
down	to	a	number	by	analysing	linearly	independent	paths	of	complexity	throughout	the	source	code	
with	a	 flow	direction	affixed.	Using	a	graph	data	structure,	 it	 follows	that	 the	source	code’s	 flow	of	
execution	 to	 its	most	 basic	 logical	 inference	 of	 path	 deduction	 is	 reduced.	 In	 sequentially	 ordered	
operations,	there	is	a	flow	loop	throughout	the	program’s	execution	that	can	be	represented	by	nodes	
with	a	connective	direction	between	them.	(McCabe,	1983)	

The	 magnitude	 of	 complexity	 is	 linearly	 dependent	 on	 the	 amount	 of	 conditions	 imposed	 on	 its	
execution.	 For	 example,	 nesting	 conditional	 loops,	 or	 having	 loops	 with	 multiple	 conditions	 for	
execution	dependence	increases	the	order	of	magnitude	for	complexity	of	the	graph.	For	instance,	a	
program	with	a	single	loop	with	one	pre-condition	would	have	the	resulting	cyclomatic	complexity	of	
1;	whereas	nesting	another	inside	this	with	two	pre-conditions	would	result	in	a	complexity	of	3.	This	
is	brought	about	by	logical	deduction	that	a	Boolean	expression	can	have	the	outcome	of	being	either	
true	or	false.	As	these	statements	can	be	evaluated	as	only	one	or	the	other,	the	series	of	pre-conditions	
for	their	execution	can	take	several	paths	for	choice	based	upon	the	steps	leading	to	there.	

	

FIGURE	3	(A)	IF-THEN-ELSE	LOOP	(B)	WHILE	LOOP	(C)	WHILE	WITH	SENTINEL	(D)	FOR	LOOP	(DISSANAYAKE,	2014)	

As	can	be	seen	 in	all	 flow	graphs,	there	are	two	common	points	–	an	entry	point	and	an	exit	point.		
(Harrison,	1984)	Logically,	 the	more	paths	 that	can	be	 traversed	 in	a	program,	 the	more	complex	a	
program	can	be,	as	it	can	extend	through	multiple	choice	permutations.	Mathematically,	the	cyclomatic	
complexity	can	be	described	as	a	program	broken	down	into	its	most	basic	blocks,	and	the	relationship	
between	 them	 as	 a	 directed	 graph	 as	 connective	 edges	 inferring	 direction	 of	 movement.	 As	 the	
complexity	is	therefore	dependent	on	the	number	of	nodes	(N),	the	number	of	edges	for	nodes	(E),	and	
the	number	of	connected	components	(P);	the	resulting	complexity	(M)	is	as	follows:	(Harrison,	1984)	

𝑀 = 𝐸 − 𝑁 + 2𝑃	

	 	

	 18	

DEPTH-FIRST	SEARCH	
Depth-First	 Search,	 or	DFS,	 is	 a	 traversal	method	 for	 the	 abstract	 graph	data	 type	determining	 the	
graph’s	exploration	route	 from	start	 to	end	over	a	given	vertex,	and	a	 topological	adjacency	 list	 for	
vertices	 with	 respect	 to	 the	 given	 node’s	 neighbours.	 The	 search	 algorithm	 is	 of	 O(N)	 complexity,	
traversing	paths	until	an	impasse	is	reached,	causing	the	algorithm	to	backtrack	on	its	path	to	reach	
other	unexplored	paths	of	 its	neighbours	 recursively.	DFS	uses	 the	graph	classification	of	edges	 for	
determining	the	most	appropriate	set	of	paths	to	traverse	to	generate	routes	from	subtree	to	subtree	
and	generate	the	best	route	from	top	to	bottom	over	a	vertex	recursively.	(Goodrich	&	Tamassia,	2001)	

dfs(V, adjacent)
 parent = {}
 for s in V:
 if s not in parent:
 parent [s] = null
 dfs_visit (V, adjacent, s)

dfs_visit(V, adjacent, s):
 for v in adjacent[s]:
 if v not in parent:
 parent[v] = s
 dfs_visit(V, adjacent, v)

This	then	 leads	to	the	 idea	of	reachability	within	the	closed	system	as	a	method	for	optimisation	of	
source	code.	As	reachability	is	only	possible	if	code	execution	extends	to	that	block,	unreachable	code	
can	be	safely	removed	without	any	unwanted	effects	as	these	blocks	do	not	contribute	anything	to	the	
program.	The	inverse	may	also	be	true	where	a	program	may	be	stuck	in	an	infinite	loop	of	execution	
without	any	way	to	break	out	of	the	iteration,	and	isolate	the	execution	to	only	a	closed	sub-system	in	
the	graph	traversal.	(Even,	2011)	Graph	structures	generally	form	trees	that	are	traversed	in	order	by	
DFS	by	starting	from	the	root	node,	and	generally	explore	as	far	as	possible	along	certain	routes	before	
coming	to	an	end.	The	aim	of	DFS	 is	 to	maximise	 the	traversal	depth	before	having	 to	backtrack	 to	
another	branch.	

MAINTAINABILITY	INDEX		
The	 maintainability	 index	 is	 a	 metric	 tying	 together	 the	 three	 metrics:	 Halstead	 volume,	 McCabe	
cyclomatic	complexity,	and	the	raw	number	of	lines	of	code	in	one	in-depth	measure	of	the	complexity	
to	determine	the	relative	ease	of	maintaining	a	fragment	of	code.	The	boundary	conditions	for	quality	
lies	over	a	discrete	set	of	four	distinct	areas:	less	than	0	is	grade	D,	0-65	is	grade	C,	65-85	is	grade	B,	
and	greater	than	85	is	grade	A.	(Naboulsi,	2011)	

𝑀𝐼 = 171 − 5.2 ln V − 0.23V G − 16.2ln	(LOC)	(Radon,	n.d.)	

There	is	another	implementation	of	maintainability	index,	considering	a	separate	metric	of	the	quantity	
of	comments	within	a	program’s	scope	and	definition.	This	builds	on	its	base	definition	of	tying	together	
multiple	contextual	and	meaningful	metrics.	As	code	alone	can	only	be	 interpreted,	comments	fast-
forward	this	process	by	defining	a	use	and	an	expected	behaviour	of	a	subroutine.	However,	this	can	
only	be	true	if	the	comments	provided	are	meaningful	and	provide	a	useful	 insight,	which	is	again	a	
continuous	and	potentially	indeterminate	metric	that	varies	among	individuals.	

	 19	

𝑀𝐼9 = 𝑀𝐼 + 50 sin 2.46 ∗ 𝐶𝑀% 		(Radon,	n.d.)	

Working	again	with	 the	same	sorting	code	sample,	 the	maintainability	 index	will	be	calculated	with	
respect	to	other	previously	acquired	metrics.	

void sort(int *a, int n) {
 int i, j, t;
 if (n<2)
 return;
 for (i=0; i<n-1; i++) {
 for (j=i+1; j<n; j++) {
 if (a[i]>a[j]) {
 t = a[i];
 a[i] = a[j];
 a[j] = t;
 }
 }
 }
}
	
Given	 the	 Halstead	 volume	 (392),	 McCabe	 complexity	 (5),	 and	 given	 SLOC	 excluding	 the	 function	
definition	(14);	the	maintainability	index	governed	by	this	implementation	resides	at	approximately	96.	
This	value	is	within	the	area	of	being	greater	than	85,	and	so	is	of	grade	A	–	easy	maintainability.

MODULARITY	
As	functions	and	objects	within	a	program	aren’t	always	independent,	there	exists	sets	of	coupling	and	
cohesion	in	tying	together	functionality	and	modularity.	A	cohesive	module	refers	to	a	one	that	makes	
many	intra-module	calls	within	its	own	scope,	showing	a	low	dependence	on	functionality	outside	of	it.	
The	coupling	of	a	module	refers	 to	the	 inter-module	calls	 that	a	 function	must	make	to	complete	a	
subroutine.	(Serebrenik,	2011)	

In	addition	to	these	clashing	features	of	program	structure,	there	exists	two	modularity	metrics	known	
a	 fan-in	 and	 fan-out.	 The	 fan-in	 index	 of	 module	M	 is	 the	 quantity	 of	 modules	making	 calls	 for	 a	
subroutine	within	M.	The	fan-out	index	of	module	M	is	the	quantity	of	module	calls	made	by	a	function	
in	M.	These	 indices	are	 important	as	 it	shows	the	 levels	of	code	use	and	reuse	within	a	program.	A	
module	with	a	fan-in	index	of	0	implies	that	there	is	a	level	of	redundant	or	dead	code	existing	within	
the	system	that	isn’t	in	use	by	any	module.	(Borysowich,	2007)	

By	defining	the	fan-in	(read)	and	fan-out	(write)	indices	for	a	given	module’s	functions,	the	information	
flow	can	be	determined	over	a	global	data	structure	of	connecting	inputs	to	outputs.	The	generalisation	
of	connectivity	of	modules	within	a	system	results	the	following	definition:	(Serebrenik,	2011)	

Shepperd	index	(s):	(fan-in	*	fan-out)2	
Henry	&	Kafura	(HK):	SLOC	*	s2	

	 	

	 20	

DESIGN	

This	chapter	set	out	the	details	of	the	design	implemented	using	the	literature	of	the	previous	chapter	
as	the	basis	for	its	methodologies	in	choices	taken.	It	sets	out	explaining	details	across	major	sections	
of	 system	 topology,	 technologies	 used	 in	 detail,	 design	 patterns	 implemented,	 as	 well	 as	 security	
considerations	for	the	wide-scale	use	of	version	control	systems.	Given	the	prevalent	use	of	JSON	across	
the	web	through	RESTful	services,	detail	 is	also	given	to	the	storage	methods	and	data	abstractions	
deployed	in	data	generation	and	protocol	deployment.	

BOTTOM-UP	METHODOLOGY	
Experimental	 design	 played	 a	 large	 part	 in	 undertaking	 this	 project.	 For	 exploration	 to	 be	 done	on	
tackling	the	distinct	problem	of	relating	code	to	human	metrics,	there	was	a	lack	of	tools	available	for	
leverage.	Dealing	with	this	issue	led	to	the	design	and	implementation	of	a	toolset	for	a	specific	pattern	
of	use	for	this	specific	problem	–	in	essence,	building	a	suite	of	highly	tailored	tools	to	fit	the	problem	
at	hand.	

	

FIGURE	4	DESIGN	PROCESS	GENERALISATION	

The	methodology	throughout	the	development	and	implementation	has	always	been	to	work	towards	
the	end	goal	by	starting	small	and	iterating	often	as	per	Agile	methodology	design	principles.	The	design	
of	the	system	follows	a	bottom-up	design	–	initially	with	small	 interactions	of	having	a	Python	script	
successfully	clone	repositories	and	collecting	meta	data,	to	that	of	a	fully-fledged	pipeline	system	with	
a	feed-forward	design	from	stage	to	stage.	This	consortium	of	modules	working	independently	for	one	
single	job	led	to	a	very	modular	design,	allowing	for	a	variety	of	simple	sub-systems	to	work	together	
cohesively	 and	 coherently	 in	 tandem	 with	 the	 desired	 outcome	 of	 data	 visualisation	 and	 metric	
aggregation.		

Another	 item	 for	 consideration	 was	 the	 premise	 on	 which	 the	 project	 was	 started.	 The	 School	 of	
Computer	Science	and	Statistics	 in	 the	University	of	Dublin,	Trinity	College,	 is	currently	carrying	out	
research	on	the	research	topic	of	systematic	code	analysis.	As	a	by-product	of	working	with	Professor	
Stephen	Barrett,	there	was	an	exposure	to	the	potential	of	the	system	being	used	in	further	work	as	
part	of	a	module	in	the	existing	system.	Ergo,	the	platform	implementation	should	have	the	potential	

	 21	

to	 be	 agile	 enough	 to	 work	 as	 a	module	 in	 an	 already	 existing	 system.	 As	 an	 increase	 in	 discrete	
encapsulation	results	in	a	higher	amount	of	modularity,	it	was	decided	that	it	was	of	utmost	importance	
to	allow	for	the	system	to	be	as	modular	as	possible	to	facilitate	the	potential	use	of	this	work	in	time	
to	 come	 for	 others.	 Bottom-up	 design	 allowed	 for	 the	 project’s	 various	 areas	 of	 the	 system	 to	 be	
completely	encapsulated	in	their	own	modules.	The	independence	between	modules	meant	that	each	
individual	 part	 of	 the	 system	 could	 be	developed	 in	 isolation,	 ensuring	 that	 changes	made	 created	
minimum	 dependency	 injections	 and	 avoided	 God-object	 refactoring	 code	 smells.	 (Fontana,	 et	 al.,	
2011)	

SYSTEM	TOPOLOGY	
The	 implementation	 is	composed	of	 several	nodes	within	a	pipeline	working	 in	 tandem	together	 to	
accomplish	various	tasks	from	starting	a	job	to	visualising	it	in	a	graph	format.	The	user	interacts	with	
a	web	interface	to	delegate	and	access	jobs,	where	a	URI	to	a	GitHub	repository	can	be	submitted	as	a	
job	through	an	asynchronous	post	request	through	Ajax	to	the	backend.	The	endpoint	on	the	Node.js	
backend	dispatches	a	job	asynchronously	by	invoking	Python	scripts	through	the	shell	and	passing	the	
parameters	necessary	for	Git	and	jobs	to	complete	successfully.		

	

FIGURE	5	SYSTEM	TOPOLOGY	

The	Python	job	initially	clones	the	repository	and	pulls	necessary	commit	data	by	paginating	through	
the	GitHub	API.	The	necessary	commit	data	is	stored	in	a	list	data	structure	and	is	then	iterated	through,	
at	each	stage	resetting	to	the	appropriate	commit	SHA	head,	and	running	metric	analysis	until	the	end	
is	reached.	The	Python	job	constantly	writes	to	a	MongoDB	backend,	while	Node.js	reads	constantly	
and	notifies	 the	 front	end	of	any	changes	 in	progress	using	the	emitter	design	pattern	via	 the	MVC	
architecture	(as	discussed	in	section	3.5	in	Design	Patterns).	As	the	jobs	progress,	the	data	visualisations	
on	graphs	can	be	viewed	under	appropriate	tabs.	There	is	a	variety	of	graphs	that	aims	to	link	code	to	
human	metrics	pertaining	to	complexity,	contributor	 join	time,	and	SLOC;	as	well	as	derived	metrics	
with	these	as	the	base	form	of	generation.	

	 	

	 22	

GIT	VERSION	CONTROL	
A	version	control	system	is	a	centralised	way	to	keep	a	project	in	check	and	to	collaborate	with	other	
developers.	 Git	 is	 a	 tool	 that	 follows	 this	 requirement	 by	 being	 a	 version	 control	 system	 for	
collaboration	 work	 on	 projects	 using	 a	 distributed	 architecture	 over	 a	 tree	 structure.	 Due	 to	 its	
distributed	nature,	 it	 follows	a	non-linear	version	history.	 (Atlassian,	n.d.)	As	 there	 is	no	centralised	
repository	for	delegating	control	to	a	central	authority,	it’s	paramount	there	be	a	way	to	commit	and	
merge	differing	histories	 together	and	mesh	 together	 to	 form	a	consistent	 schema.	To	combat	 this	
divergent	set	of	histories,	it	uses	a	SHA-1	hash	to	keep	repositories	in	line	with	commit	changes	and	
ordering	for	verification.	This	has	the	by-product	of	being	able	to	encode	an	entire	repository	history	
towards	one	commit	in	the	hash.	(Sink,	n.d.)	Older	centralised	control	systems	such	as	SVN	and	CVS	are	
required	 to	 synchronise	 with	 a	 central	 authority	 first	 before	 commits	 can	 be	 submitted	 to	 the	
repository.	Git	was	chosen	as	it	is	the	current	standard	for	the	software	industry	version	control.	

One	of	the	primary	things	needed	for	analysing	a	repository	is	to	be	able	to	utilise	Git	programmatically	
to	access	a	centralised	repository	store.	It	was	deemed	necessary	to	implement	a	simple	system	for	
command	line	interaction	programmatically,	where	a	repository	can	be	cloned	and	acted	upon	easily.	
Once	the	repository	is	cloned	to	the	local	folder,	its	history	can	be	iterated	over,	and	GitHub’s	API	can	
be	 leveraged	 to	 record	more	meta	 data	 about	 the	 change	 history.	GitHub	 is	 an	 extremely	 popular	
website	for	developers	to	store	projects	and	collaborate	with	other	members	easily.	There	is	also	the	
advantage	of	not	only	having	an	exorbitant	number	of	active	repositories,	but	an	extensive	API	for	easy	
interaction	with	projects.	This	API	allows	 for	 scripts	 to	be	authenticated	and	access	 subsets	of	data	
across	repositories	as	appropriate	to	the	level	of	details.	Through	use	of	this	set	of	web	services,	it’s	
possible	to	use	the	API	to	generate	a	 list	of	SHA	keys	per	commit,	sanitise	the	results,	and	then	use	
these	values	to	iterate	over	the	commit	history	from	start	to	the	most	recently	committed	change.	

LANGUAGE	CHOICES	
For	the	main	processing	jobs	of	the	project,	Python	was	chosen	as	the	primary	language.	Initially,	other	
forms	of	 programming	paradigms	 and	 languages	were	weighed	up;	 for	 instance,	 using	 a	 functional	
programming	language	such	as	Haskell	for	job	dispatching	and	dealing	with	the	analysis	of	repos	due	
to	its	terse	nature	and	mathematical	foundations.	However,	Python	allowed	for	accomplishing	more	in	
a	 shorter	 amount	 of	 time	while	 still	maintaining	 high	 levels	 of	 readability.	 Python	was	 used	 as	 the	
primary	scripting	language	due	to	its	pseudocode-like	nature.	The	Python	programming	language	is	a	
level	of	abstraction	above	C,	and	is	the	de-facto	lingua-franca	of	data	science	and	is	a	general-purpose	
programming	language	highly	suited	to	rapid-prototyping,	namely	due	to	Python’s	aphorism	of	terse,	
pragmatic	code	with	a	modular	nature.	

For	the	bulk	of	processing	for	data	representation	and	job	dispatching	on	the	server-side,	I	decided	that	
JavaScript	would	be	well	suited	for	uniting	an	interface	under	one	language.	As	a	multi-functional	and	
multi-paradigm	tool	that	can	work	on	both	the	client	and	server	stacks,	it	was	found	that	JavaScript	was	
well	suited	for	the	nature	of	the	task	at	hand.	The	design	of	the	system	incorporates	a	dynamic	frontend	
and	backend.	This	results	in	there	being	two	main	areas	of	use	for	JavaScript	throughout	this	stack	–	
Node.js	on	the	backend	for	handling	endpoints	and	aggregating	database	querying,	and	jQuery	on	the	
frontend	 for	 dynamically	 setting	 content	 and	 creating	 requests	 asynchronously	 through	 Ajax.	 The	
asynchronous	nature	of	JavaScript	also	resulted	in	a	high	level	of	performance	for	regular	accessing	of	
repo	metrics	for	graphing.		

	 23	

DESIGN	PATTERNS	
The	model-view-controller	architecture	is	a	common	pattern	for	designing	the	layout	of	interactions	
among	modules	in	software	design	today.	Its	main	argument	for	use	is	the	extraction	of	dependencies	
from	code,	and	increasing	the	level	of	modularity	in	a	code	base.	It	consists	of	three	distinct	areas	–	the	
model,	the	view,	and	the	controller	which	work	in	tandem	with	each	other	to	separate	the	logic	from	
the	data	and	view	controllers.	

	

FIGURE	6	MVC	ARCHITECTURE	ILLUSTRATION	(GOOGLE,	2016)	

The	model	 portion	 of	 the	model	 deals	 primarily	with	 handling	 the	 behaviour	 of	 the	 application	 by	
responding	to	certain	events	and	notifying	any	observers	which	then	trigger	events	to	happen	with	a	
persistence	 layer	 of	 data	 structures	 or	 a	 database.	 The	 view	 element	 of	 this	 architecture	 is	 the	
interactive	user	interface	that	works	to	provide	a	way	for	the	individual	to	effectively	see	that	rendered	
data	 to	 the	 screen.	 The	 controller	 acts	 as	 a	middle-man	 between	 the	 user	 interface	 view,	 and	 the	
persistence	layer.	The	controller	delegates	actions	and	works	to	receive	actions	and	calls,	which	then	
correspond	to	performing	given	subroutines.	(Reenskaug	&	Coplien,	2009)	

The	 emitter-observer	 design	 pattern	 works	 as	 part	 of	 the	 MVC	 architecture	 by	 creating	 a	 list	 of	
observers	and	dependent	elements,	and	notifying	accordingly	with	respect	to	updates	in	state	changes.	
(Celis,	2010)	An	emitter	generates	an	event-driven	change	according	to	a	state	change	of	an	object	
within	the	system.	An	observer	watches	an	emitter	for	any	changes	notified	during	its	existence,	and	
reacts	accordingly	by	triggering	other	actions	on	some	functionality	occurring.	

Dependency	injection	is	a	paradigm	of	providing	an	inversion	of	control	to	classes,	where	the	objects	
for	 a	method	 signature	 are	 provided	 through	 parameters	 as	 a	 dependency	 instead	 of	 instantiation	
within	the	method	itself.	The	inversion	of	control	of	dependency	construction	is	quite	useful	in	testing	
phases	within	 development	 cycles;	 as	 it	 allows	 for	 objects	 and	 data	 structures	 to	 be	mocked.	 The	
outside	 source	 of	 providing	 dependencies	 gives	 a	 greater	 amount	 of	 control	 to	 run-time	 object	
injection.	

	 	

	 24	

PROGRAMMATIC	ANALYSIS	
As	each	commit	within	a	repository	can	be	iterated	over	and	the	commit’s	meta-data	be	retrieved	from	
GitHub’s	public	API;	it’s	possible	to	generate	more	metrics	about	the	actual	code	changes	that	occurred	
within	that	commit.	While	there	are	some	tools	available	for	broad	forms	of	code	analysis	via	various	
sources,	to	find	a	tool	that	appropriate	covers	the	necessary	metrics	required	was	a	challenge.	The	base	
requirements	for	finding	such	a	tool	revolved	around	finding	a	large	set	of	metrics	about	lines	of	code,	
relative	complexity,	and	measures	about	the	code’s	intrinsic	maintainability.	Tools	around	code	analysis	
generally	exist	within	the	domain	of	ensuring	that	code	remains	to	a	certain	standard,	notifying	if	any	
violations	of	the	current	enacted	standard	have	occurred	by	members	of	the	team,	as	well	as	ensuring	
that	certain	base	design	principles	and	patterns	are	to	be	followed.	

SLOC/LOC,	as	discussed	in	previous	chapter,	is	the	most	basic	measure	of	a	program.	It	is	the	count	of	
individual	 lines	 of	 code	 in	 a	 program	 that	 is	 generally	 tied	 to	 the	 effort	 of	 development.	 SLOC	 is	
considered	a	poor	measurement	due	to	the	lack	of	standards	for	counting	lines	of	code.	It	is	generated	
in	analysis	due	to	the	part	it	plays	in	creating	maintainability	metrics.	As	per	section	2,	Halstead	volume	
is	a	general	measure	for	empirically	measuring	the	absolute	size	of	a	program	with	respect	to	the	overall	
vocabulary	of	a	program	 in	 terms	of	operators	and	operands.	 In	addition	 to	generating	 the	derived	
McCabe	complexity	with	a	program’s	SLOC,	the	maintainability	index	of	a	program	can	be	defined	which	
corresponds	to	the	general	ease	of	maintaining	a	program.	The	maintainability	of	a	program	gives	a	
deeper	sense	of	meaning	to	the	overall	intrinsic	difficulty	of	the	algorithm	being	implemented.	

	

FIGURE	7	SAMPLE	MAINTAINABILITY	INDEX	DATA	FOR	COMMIT	C7E0B0F	

Analysis	and	iteration	of	commits	generate	large	volumes	of	data	per	repository.	The	high	volumes	of	
data	coupled	with	a	relatively	relaxed	schema	leads	to	the	use	of	a	document-oriented	backend	for	
storage.	Initially,	volumes	of	analysis	metrics	were	stored	as	a	simple	JSON	document.	As	this	quickly	
became	 unfeasible	 due	 to	 huge	 quantities	 of	 generated	 data,	 the	 next	 stage	 of	 design	 was	 to	
incorporate	 a	 backend	 into	 the	 system	with	 some	 form	of	 persistence	 layer	 for	 quick	 and	 efficient	
access.	

	 25	

OPEN	SOURCE	SOFTWARE	
Open	source	software	refers	to	publicly	available	repositories	that	can	be	modified	and	shared	freely	
due	to	the	design	of	being	openly	accessible	by	the	internet	on	sites	such	as	GitHub.	This	paradigm	of	
software	development	allows	for	the	enhancement	of	the	source	code	by	mass	collaboration	efforts	of	
regular	users.	Open	source	software	is	becoming	an	increasingly	more	popular	method	for	developing	
tools	for	the	masses;	with	resources	such	as	the	Linux	operating	system	and	Apache	web	server	having	
already	been	chief	pioneers	into	the	exploration	of	this	paradigm	resulting	in	their	mass	adoption.	(Paul,	
2006)	There	are	many	open	source	software	repositories	with	large	quantities	of	commits	and	a	large	
user	base	of	past	and	active	developers	providing	new	features,	refactoring,	and	committing	bug	fixes	
regularly.	 This	 ecosystem	 provides	 a	 large	 amount	 of	 tangible	 data	 that	 can	 be	 easily	 mined	 and	
aggregated	accordingly	to	metrics	derived	from	human	interaction	over	commits	for	a	repository.		

DOCUMENTED-ORIENTED	STORAGE	
Document	 oriented	 databases	 are	 very	 powerful	 tools	 in	 horizontally	 scaling	 system	 architectures	
where	 large	volumes	of	data	are	 common.	NoSQL	 is	 a	document-oriented	database	 that	allows	 for	
documents	 to	 be	 stored	 persistently	 in	 JSON	 format	 using	 key-value	 stores	 in	 an	 opaque	manner.	
NoSQL	pertains	to	the	need	of	storing	unstructured	data	in	a	logical	and	efficient	manner	–	namely	for	
the	 storage	of	documents	 that	may	not	have	a	 set	 schema	 structure.	 It	 also	 allows	 for	 an	evolving	
document	schema	over	time,	where	a	set	schema	doesn’t	have	to	be	defined	initially,	and	can	remain	
completely	 unstructured	 in	 document	 insertions.	 As	 Amazon	Web	 Services	 allows	 for	multiple	 EC2	
instances	to	be	clustered	together	and	work	horizontally	as	a	system	stack	(as	per	Distributed	Cloud	
Computing	 in	 section	 3.9),	 it	 clearly	 makes	 sense	 to	 use	 an	 appropriate	 persistence	 layer	 NoSQL	
architecture.		

JSON	is	well	suited	to	representing	the	large	quantities	of	data	within	the	scope	of	this	project	due	to	
the	 lightweight	 design	 architecture.	 It	was	 chosen	 to	 resolve	 the	 task	 of	 data	 aggregation	 and	 the	
delivery	 of	 data	 to	 a	 service’s	 endpoint	 due	 to	 the	 natural	 pairing	with	 JavaScript	 as	 per	 its	 object	
notation.	JSON	builds	on	a	key-value	pair,	being	realised	as	a	natural	collection	 in	various	 languages	
through	hashing	a	value	to	a	known	key	name	through	serialisation.	(ECMA,	2013)	This	standardised	
method	of	holding	data	unifies	the	front-end	scripts	with	the	back-end	and	persistence	layers	with	one	
given	method	of	purposely	representing	data	meaningfully.	

As	the	size	of	data	sets	grew	over	time,	passing	bulk	amounts	of	generated	data	over	thousands	of	
commits	to	the	front	end	became	unfeasibly	slow	or	resulted	in	broken	data	aggregation.	The	design	
of	program	flow	was	then	altered	to	allow	for	promise-based	callbacks.	Promises	allowed	for	data	to	
be	asynchronously	requested	and	passed	synchronously	to	further	chains	of	dependencies.	Server-side	
generation	was	used	to	groom	the	data	on	a	per-commit	basis,	allowing	for	fata	to	arrive	pre-groomed	
and	ready	for	iteration	on	graphs.		

	 26	

	

FIGURE	8	SAMPLE	RAW	LOC	DATA	FOR	COMMIT	C7E0B0F	

	

FIGURE	9	REFACTORED	SERVER-SIDE	GENERATION	TO	LOC	AGGREGATION	TO	COMMIT	C7E0B0F	

	 27	

DISTRIBUTED	CLOUD	COMPUTING		
The	client-server	model	refers	to	a	network	design	architecture,	where	there	is	one	centralised	host	
and	many	 clients	 connected	 to	 it.	 The	 centralisation	of	 control	 allows	 for	 clients	 to	 connect	 to	 the	
server,	 and	 then	 request	 resources	 or	 services	 for	 delivery	 of	 data	 back	 to	 the	 client.	 This	 form	or	
architecture	is	one	of	the	primary	methods	which	the	internet	is	built	upon	–	where	the	cooperation	
across	machines	results	in	the	overall	delivery	of	something	that	has	been	requested.		

Amazon	Web	Services	offers	a	plethora	of	services	for	distributed	and	clustered	cloud	computing	on-
demand	as	an	infrastructure	service.	Due	to	the	nature	of	high	volumes	of	data	processing	being	done	
locally	on	the	machine,	it	was	decided	that	it	was	much	more	feasible	to	use	an	EC2	instance	and	scale	
it	accordingly	to	the	work	being	done	by	the	worker	threads	for	jobs	requested	for	harvesting.	Scaling	
allows	for	more	instances	to	be	added	to	the	infrastructure,	leading	to	increased	power	and	flexibility	
of	this	system,	and	ergo	to	much	quicker	concurrent	operations	being	distributed	over	more	virtualised	
resources	in	a	data	centre.	(High	Scalability,	2016)	The	increased	cluster	power	allowed	for	more	jobs	
to	be	done	more	efficiently	and	quickly	rather	than	simply	on	a	laptop.	By	deploying	the	application	to	
an	 instance,	 it	also	meant	 that	 the	web	 interface	and	database	could	all	be	deployed	and	be	made	
accessible	accordingly	in	a	much	easier	fashion,	thereby	allowing	for	the	project	to	be	hosted	in	one	
central	VPS	location	and	be	scaled	to	suit	the	needs	of	the	load	heuristically.	

SECURITY	CONSIDERATIONS	
Use	of	the	GitHub	API	led	to	the	first	consideration	for	data	security	–	credential	leaking.	Services	like	
Git,	as	well	as	other	canonical	sources	such	as	npm,	are	used	to	host	a	variety	of	data	types	for	users	to	
download,	update,	and	make	use	of.	Therefore,	 it’s	possible	to	accidentally	 leak	passwords,	secrets,	
keys,	 tokens,	and	SSH	private	keys	online;	giving	 the	potential	of	unwanted	access	 to	 individuals	of	
these	accounts	if	this	risk	is	overlooked.	Attackers	have	the	potential	to	push	remote	fixes	to	canonical	
repositories	given	the	correct	credentials.	Given	an	npm	token	or	a	GitHub	deploy	key,	an	attacker	can	
possibly	push	malicious	code	to	consumers	of	open-source	projects;	having	the	extremely	undesirable	
effect	of	being	implicitly	installed	en-masse.	(Podjarny,	2015)	

Going	beyond	Git	and	npm;	the	hosting	of	an	open-source	project	can	be	accessed	given	the	correct	
AWS	or	SSH	keys	being	accidentally	pushed.	This	can	wreak	havoc	on	a	system	–	giving	the	attacker	a	
range	of	possibilities	from	giving	access	to	your	system,	to	running	up	bills	for	computation.	While	this	
is	abhorrent,	it	can	be	mitigated	with	the	correct	preparatory	procedures	in	using	Git	as	a	tool.	Avoiding	
blanket	usages	of	wildcard	characters	in	creating	a	commit	and	carefully	curating	the	needed	files	to	
be	included	avoids	easy	captures	of	files	that	weren’t	intended	to	be	shared.		

Making	use	out	of	the	“-p”	flag	when	adding	files	allows	the	committer	to	carefully	review	what	is	being	
added	 to	 the	 staged	 changes.	Using	 an	 ignore	 file	 allows	 for	 certain	 filenames,	 file-extensions,	 and	
folders	 to	 be	 always	 excluded	 from	 the	 staging	 area,	 and	 becomes	 invisible	 to	 the	 publishing	 tool.	
Creating	exclusions	for	commits	allows	for	not	only	accidental	inclusion	to	be	avoided	in	the	file-system,	
but	also	removes	a	share	of	bloat	within	a	repository	by	excluding	build	folders.	However,	it’s	important	
to	note	that	configuration	files,	docker	files,	output	files	and	certain	scripts	within	the	repository	can	
harbour	accidental	key	inclusion.	

Other	 mitigations	 include	 using	 hooks	 and	 environmental	 variables	 for	 holding	 keys.	 A	 hook	 is	 a	
mechanism	used	in	Git	to	perform	checks	before	completing	a	commit	via	the	command	line.	This	has	

	 28	

multiple	uses	as	a	tool,	including	enforcing	code	quality	checks	and	automated	testing;	but	also	has	the	
additional	advantage	of	breaking	a	commit	in	the	case	of	accidentally	including	certain	patterns	that	
may	be	a	credential.	(Podjarny,	2015)	Environmental	variables	keep	credentials	out	of	sight	and	hidden	
in	the	operating	system,	and	thus	avoid	the	problem	of	residing	in	a	repository	for	use.		

While	these	methods	work	well	for	data	security,	if	credentials	have	already	been	leaked,	then	the	only	
option	left	to	do	is	to	invalidate	passwords	and	tokens	as	quickly	as	possible.	Removing	commits	and	
resetting	 to	 a	 branch	with	 the	 deletion	 of	 historical	 references	 do	 not	 suffice	 in	mitigating	 leaking	
credentials.	Copies	of	the	credentials	will	still	exist	on	some	machine,	and	so	cannot	be	trusted	to	be	
completely	clear	after	a	reset.	The	solution	is	not	to	change	the	past,	but	to	change	the	future	access	
of	the	key.	

Another	consideration	within	the	scope	of	data	aggregation	via	GitHub	is	the	exposure	of	individuals’	
emails	 to	 the	web	 publicly.	 The	 knock-on	 effect	 of	 this	 is	 that	 web-crawlers	 exist	 and	 freely	 roam	
through	the	internet	–	constantly	collecting	and	harvesting	as	much	data	as	possible	from	any	available	
sources.	As	emails	are	valuable	to	spammers;	the	effect	of	mass-email	harvesting	from	public	GitHub	
repositories	 is	 that	 they	can	be	sold	en-masse	or	used	directly	 for	spamming,	 recruitment,	or	other	
purposes.	While	there	is	an	option	on	GitHub	to	keep	email	addresses	associated	to	the	account	private,	
the	default	value	is	being	publicly	visible	as	part	of	the	Git	commit	object,	and	it’s	not	commonly	known	
that	this	is	something	that	is	freely	published.	(Hakes,	2016)	

Given	this	fact,	only	a	small	section	of	users	has	activated	this	feature	to	obfuscate	the	associated	email.	
While	it’s	now	a	case	that	all	future	commits	from	an	account	to	have	a	privatised	email	address	that	
can’t	be	harvested	by	bots;	older	commits	before	this	change	was	made	still	have	the	old,	public	email	
address	 associated	 with	 them.	 Git	 does	 offer	 the	 ability	 to	 rewrite	 history	 and	 change	 repository	
histories,	but	this	in	turn	is	only	considered	for	use	where	important	data	was	leaked,	and	a	mitigation	
attempt	be	enacted.	

	

FIGURE	10	SAMPLE	COMMIT	IN	JSON	WITH	A	REDACTED	NAME	AND	EMAIL	

Consequently,	it’s	also	possible	to	push	unsigned	commits	to	a	repository	and	be	verified	as	a	different	
account.	 If	 the	host	of	the	project	becomes	compromised	and	commits	have	not	been	signed	using	
GPG,	it’s	possible	to	falsely	associate	commits	to	another	account.	Using	GPG,	this	means	that	signing	

	 29	

with	the	hash	of	SHA-1	(excluding	vulnerabilities	within	SHA-1	itself)	will	forever	state	that	the	entire	
history	of	the	given	commit	for	the	associated	tag	is	a	trusted	entity	using	the	“-s”	flag.	

From	analysis	of	various	projects	of	different	sizes;	it’s	uncommon	to	see	contributors	with	the	hidden	
email	option	enabled.	Knowing	this,	available	email	addresses	can	be	harvested	at	the	bat	of	an	eye	
with	a	simple	search	of	an	“@”	symbol.	While	GitHub	provides	a	standardised	web	interface	to	identify	
users	and	push	code	to	publicly	available	repositories,	Git	is	just	a	means	of	collaboration	that	may	or	
may	not	be	publicly	available	to	the	whole	world	as	per	public-facing	information.	(GitHub,	2017)	

Email	harvesting	is	the	use	of	a	bots	to	crawl	through	the	web	to	create	massive	lists	of	curated	email	
addresses	 for	use	 in	advertising,	phishing,	and	mass	 recruitment.	The	abundance	of	 freely	available	
email	 addresses	 to	be	harvested	by	bots	 crawling	 through	 the	 internet	has	 led	 to	 some	 interesting	
repositories	exploiting	 this.	Back	 in	 June	2016,	a	certain	 repository	was	brought	 to	 the	attention	of	
GitHub	that	exploited	the	trivial	use	of	the	GitHub	API	to	harvest	emails	of	users	between	2011	and	
2014.	(cirosantilli,	2016)	The	hoard	of	5.8	million	unique	GitHub	emails	was	subsequently	removed.	

	

	

	 	

	 30	

IMPLEMENTATION	

The	previous	chapter	dealt	with	the	design	of	the	system	topology	regarding	individual	technologies	
associated	within	the	tool-chain	as	per	 literature	discussed	in	chapter	2.	This	chapter	deals	with	the	
direct	implementation	of	the	tool-chain	as	a	method	of	aggregating	meaningful	data	sets	over	a	large	
commit	basis,	pertaining	directly	to	the	case-by-case	evaluation	of	metrics	to	directly	aggregate	and	
observe	relationships	between	committer	and	code	quality.	The	resulting	inferences	are	then	dealt	with	
directly	in	chapter	5	where	a	conclusion	is	discussed	having	evaluated	possible	evidence	derived	from	
logical	arguments	obtained	in	data	visualisation	suite.	

OPERATIONAL	DETAILS	
My	scripts	run	with	parameters	of	the	account	and	repository	requested	to	mine	data	about	via	the	
command	line	or	through	the	web	interface.	As	a	job	is	invoked,	metrics	are	generated	on	a	per	commit	
basis	 spanning	 five	 collections	 per	 repository	 database	 –	 average	 complexity,	 commit	 details,	
cyclomatic	complexity,	maintainability	indices,	and	raw	metrics.	The	script	takes	a	while	to	retrieve	all	
the	commits	for	the	repository	on	start	of	the	script,	due	to	the	limitation	imposed	by	GitHub	API	where	
the	maximum	pagination	index	retrievable	is	100	records	at	a	time.	Larger	repositories,	such	scikit-learn	
with	over	20,000	commits;	take	a	substantial	amount	of	time	to	iterate	through	the	initial	grooming	
process	of	aggregating	basic	info	such	as	commit	SHA-1	head	references	and	author	data.	

	

FIGURE	11	PROGRESSION	OF	A	JOB	DISPATCH	OVER	A	REPOSITORY	(KERAS)	

As	metrics	are	aggregated	through	the	analysis	process	invoked,	large	quantities	of	data	are	generated	
and	stored	within	MongoDB.	Repositories	with	a	large	quantity	of	commits	take	sufficiently	longer	to	
generate	and	use	large	amounts	of	space	for	storage.	This	creates	delays	on	retrieving	information	and	

	 31	

displaying	it	 in	the	browser	due	to	the	large	quantities	of	JSON	data.	In	one	instance,	6000	commits	
generated	approximately	850MB	of	metrics,	and	taking	over	18	seconds	for	the	data	to	be	loaded	from	
the	database	into	the	first	promise	resolve	of	data	manipulation	for	charts.	In	larger	repositories,	this	
delay	can	quickly	become	unfeasible	and	would	require	more	server	power	and	generating	graphs	on	
the	server-side	with	the	increased	computational	power	available.	

Metrics	generated	per	commit	have	the	owner’s	identity	obfuscated	for	privacy	using	a	64-bit	hashing	
algorithm	on	the	committer’s	email	address.	This	resolves	issues	associated	with	identity	and	relating	
digesting	metrics	 and	 relating	 them	 back	 to	 an	 individual,	 rendering	 it	 impossible	 to	 recognise	 an	
individual’s	identity	from	its	corresponding	hash	by	simply	looking	at	the	chart.	

	

FIGURE	12	EXAMPLE	JOB	PROGRESSION	AND	OPTIONS	FOR	GRAPHS	

Job	dispatching	is	simplified	through	an	easy	to	use	front	end	interface,	where	the	user	must	input	a	
GitHub	repository	link	and	click	on	“start	job”	to	delegate	an	analysis	job	to	start.	This	interface	allows	
for	the	user	to	view	raw	data	metrics	and	graphs	as	appropriately	through	tabs	that	receive	updates	
from	the	server	corresponding	to	progress	bars,	showing	the	current	progression	of	the	repo	analysis.		

The	use	of	Ajax	 allows	 for	 parts	 of	 the	page	 to	be	updated	on	 receiving	data	updates	 and	on-click	
listeners	asynchronously	without	having	to	refresh	the	page.	The	interface	itself	is	hosted	on	an	Amazon	
EC2	instance	and	runs	services	remotely.	Its	primary	use	is	for	tying	together	all	parts	of	the	system	
together	into	one	easily	accessible	front-end	subsystem,	where	the	user	can	see	the	available	options	
for	data	aggregation	and	access	as	appropriately.	

	 	

	 32	

DATA	VISUALISATION	
Relationships	generated	across	data	sets	raised	some	 interesting	 inferences.	By	feeding	repositories	
through	the	digestion	process	of	analysing	code	metrics,	clusters	of	variables	were	manually	aggregated	
and	observed;	which	were	then	graphed	against	one	another	to	identify	potential	relationships.	Metrics	
acquired	inhabited	a	set	of	collections:		

• Complexity	scores	
• Committer	meta-data	
• Raw	metrics	

On	 a	 per	 commit	 basis,	 documents	 were	 generated	 pertaining	 to	 a	 file-by-file	 basis	 associated	 to	
changes	made	per	committer.	Contextually,	this	gives	a	large	scope	at	observing	the	ownership	of	a	
repository,	 given	 the	 pretence	 of	 the	 quality	 and	 quantity	 of	 the	 contributions	 resulting	 in	 a	
standardised	complexity.		

	

FIGURE	13	SAMPLE	METRIC	OF	CYCLOMATIC	COMPLEXITY	

	 	

	 33	

PERFORMANCE	CHARACTERISTICS	
The	performance	of	the	system	is	generally	slow	due	to	the	time	take	to	iterate	throughout	thousands	
of	commits	per	repository.	On	a	commit-by-commit	basis,	the	system	must	retrieve	all	meta-data	about	
commit	 from	 the	GitHub	API	web	 service,	 clone,	 then	 iterate	 through	while	generating	metrics	per	
given	 commit	 and	 insert	 documents	 appropriately	 into	 the	 database.	 The	 resulting	 outcome	 is	 a	
procedure	 that	 is	highly	dependent	on	 the	 relative	amount	of	 code	 to	 iterate	 through	 in	SLOC,	 the	
number	of	commits,	and	the	number	of	collaborators.		

On	progression	of	this	job,	the	time	taken	to	load	and	view	graphs	also	depends	on	the	relative	size	of	
the	 commits	 and	 meta-data	 quantity	 associated	 with	 the	 repository.	 Graph	 loading	 time	 extends	
further	 and	 further	 given	 more	 and	 more	 data	 sets	 to	 work	 with,	 due	 to	 the	 issues	 in	 delivering	
thousands	of	 records	and	generating	graphs	accordingly	 to	 the	data	 set.	 The	net	 result	of	 the	data	
delivery	performance	is	the	general	increase	of	waiting	times	as	the	repositories	age	and	gain	volume	
of	work.	In	one	such	instance,	generating	an	aggregate	of	four	repositories’	Halstead	complexities	over	
a	normalised	time-period	took	approximately	33.5s	to	deliver	to	the	front	end	and	be	resolved.	

	

FIGURE	14	HIGH	VOLUME	OF	DATA	DELIVERED	WITH	A	HIGH	WAIT	TIME	

JOIN-TIME	V	CONTRIBUTION	QUANTITY	
The	join	time	of	a	contributor	is	highly	important	for	their	overall	influence	of	code	ownership	in	the	
repository.	 Open-source	 repositories	 tend	 to	 undergo	 a	 snowballing	 effect	 of	 mass	 contributor	
adoption	as	the	repository	progresses	in	age.	As	observed	from	frequencies	and	sizes	of	commits	in	the	
contribution	overall	to	the	project’s	goal,	it’s	frequently	observed	that	individuals	who	join	a	repository	
at	an	initial	formation	stage	tend	to	become	major	contributors	in	the	project’s	lifetime.	The	effect	of	
this	is	a	high	number	of	commits	coupled	with	a	large	portion	of	code	ownership	in	terms	of	the	time	
at	which	an	 individual	began	contributing.	As	 time	progresses	and	 the	 repository	ages,	a	negatively	
exponential	 curve	 is	 observed	 where	 subsequent	 contributors,	 while	 larger	 in	 number,	 tend	 to	
contribute	less.	

	 34	

ADOPTION	SNOWBALLING	V	COMPLEXITY	
Leading	on	from	the	effect	of	join-time	of	individuals	to	a	given	repository,	another	metric	inferred	is	
the	effect	of	the	rate	at	which	new	contributors	join	a	repository.	Metrics	observed	across	repositories	
show	a	 steady	 increase	 in	 contributors	over	 time,	 resulting	 in	 the	progression	of	 the	maturity	 level	
observed	in	a	repository	as	it	ages.	The	net	effect	of	contributors	joining	a	repository	tends	to	grow	
over	time,	allowing	for	code	to	become	more	generic	over	time	due	to	many	individuals	dealing	with	
the	code	base	on	a	regular	basis.		

As	GitHub	is	a	social	platform	for	developers	to	interact	with	one	another	through	modifying	a	code	
base,	understanding	 the	code	base’s	 social	metrics	 is	 important	 for	determining	 the	popularity	and	
potential	for	the	repo	to	snowball	contributors	over	time.	Repositories	with	an	active	set	of	members	
contributing	at	regular	intervals,	which	also	addresses	an	issue	in	a	new	light.	Given	exposure,	a	critical	
mass	of	users	is	attracted	to	the	repository	over	time,	which	in	turn	places	the	repository	in	the	charts	
for	other	budding	developers	to	find	and	contribute	to.	As	open-source	developers	receive	no	extrinsic	
motivation	in	pay	or	employment,	organic	growth	through	an	intrinsic	motivation	becomes	key	to	the	
repository’s	success	in	terms	of	the	interest	that	it	generates.	Individuals	joining	the	repository	must	
generate	 an	 interest	 of	 some	 sort,	 as	 soliciting	 for	 collaborators	will	 only	 bring	 a	 repository	 so	 far	
extrinsically	as	per	the	swarm	size	of	the	repo	collaborators.	

STAGES	OF	REPO	COMPLEXITY	
Repositories	existing	within	the	open-source	world	tend	to	go	through	continuous	iterations	in	
maturity	levels	over	time.	These	stages	can	be	discretely	organised	into	three	broad	areas:	

• Young	
• Growing	
• Mature	

	

FIGURE	15	REPOSITORY	MATURITY	OVER	TIME	

	 35	

The	young	stage	is	made	up	of	a	small	group	of	participants	initially,	but	tends	to	remain	persistent	
throughout	the	project	contributing	the	most	individually	as	per	generally	having	the	highest	amount	
of	commits	in	comparison	to	any	other	later	joiners.	This	group	also	shows	the	greatest	changes	in	
complexity	for	the	repository,	with	a	rapidly	evolving	and	changing	code	base.		The	complexity	within	
this	stage	rapidly	fluctuates	upwards	and	downwards.	

The	growing	stage	of	software	development	tends	to	show	a	larger	group	of	individuals	collaborating	
to	create	software	with	a	more	fixed	goal.	The	participants	joining	at	this	stage	are	higher	in	numbers	
in	comparison	to	the	original	adopters,	forming	a	larger	overall	group;	but	provide	fewer	contributions	
per	individual.	The	complexity	of	the	repository	tends	to	become	more	stable,	with	the	initial	anarchy	
of	complexity	decreasing	forming	a	more	cohesive	and	sturdy	repo.		

The	mature	stage	of	a	repo	shows	a	further	increase	in	collaborators,	being	high	in	numbers	but	low	in	
commits	per	individual.	Committers	joining	at	this	point	generally	contribute	a	handful	of	commits	at	
most,	generally	observed	as	pertaining	to	refactoring	and	bug	fixes;	thereby	giving	extreme	stability	in	
complexity	changes	due	to	minimal	changes	to	major	features.	

SLOC	V	COMPLEXITY	
SLOC	in	a	software	repository	refers	to	the	amount	of	lines	of	code	associated	with	the	source	code.	
While	the	complexity	of	a	repository	tends	to	reach	a	steady	state	after	some	time	due	to	the	repo	
becoming	more	mature;	sudden	large	inclusions	of	source	code	that	then	are	suddenly	removed	cause	
spiking	in	the	relative	complexity	of	a	repository.	The	net	effect	of	this	is	the	addition	of	churn	to	the	
repository.	However,	as	the	repository	progresses,	the	given	quantities	of	churn	over	time	gradually	
decreases	in	magnitude	due	to	reaching	a	release.	The	addition	of	lines	of	code	continues	over	time	
due	to	collaborators	continuing	in	providing	contributions	to	the	repository	through	bug	fixes,	and	pull	
requests.	But	overall,	 there	 tends	 to	be	a	 slower	growth	 in	 the	SLOC	of	a	 repository	 relative	 to	 the	
ageing	of	the	project.	This	is	shown	in	comparing	the	relative	changes	in	complexity	to	the	additions	of	
code	over	time	to	a	repository,	and	the	general	smoothening	out	of	the	contributions’	SLOC	over	time.	

	

FIGURE	16	DEMARCATED	MATURE	STAGE	PROGRESSION	 	

	 36	

EVALUATION	

In	 the	 previous	 chapter,	 some	 inferences	 observed	 were	 discussed	 in	 the	 implementation	 of	 the	
toolchain	across	software	repository	mining.	This	chapter	sets	out	to	expand	on	these	inferences	by	
providing	further	discussion	and	evidence	through	data	set	visualisation	across	mined	repositories.	The	
net	result	is	a	path	of	exploration	resulting	from	some	interesting	relations	obtained	from	a	selection	
of	data	sets	to	be	further	generalised	across	large	data	sets	in	future	work.	

JOIN-TIME	V	CONTRIBUTION	QUANTITY	
Across	a	wide	range	of	repositories	analysed,	there	appears	to	be	an	inversely-exponential	snowball	
effect	 of	 the	 overall	 individual	 contribution	 commit	 quantity	 versus	 the	 overall	 swarm	 size	 of	
contributors	in	an	open-source	project.	The	greatest	and	most	frequent	contributors	throughout	the	
entire	life	of	a	project	generally	tend	to	be	within	the	first	initial	groups	of	joining	the	repository	as	a	
contributor.	The	effect	of	this	 is	 that	the	 initial	contributors	tend	to	become	the	most	predominant	
contributors	overall.		

	

FIGURE	17	JOIN	TIME	OF	COLLABORATORS	VERSUS	THE	CONTRIBUTION	SIZE	IN	COMMITS	

However,	 these	 contributors	have	had	 the	highest	 amount	of	 time	 in	being	active	members	of	 the	
project,	and	so	have	the	effect	of	time	on	their	side.	Later	joiners	tend	to	contribute	less	in	comparison	
to	 the	original	 contributor	 group	at	 the	 start	 of	 the	project,	 but	 there	 is	 a	much	 larger	quantity	of	
individuals	in	later	groups	contributing	less	individually.	The	net	effect	is	a	small	group	of	contributors	
being	active	throughout	the	 life	of	the	project,	with	vast	quantities	of	collaborators	committing	pull	
requests	in	smaller	amounts	as	per	the	project’s	scope.	

It	appears	then,	that	earlier	contributors	of	a	repository	tend	to	become	more	powerful	developers	
through	the	earlier	adoption	of	a	repository.	Throughout	the	project’s	life,	the	initial	small	core	group	
of	developers	are	constant	committers	and	do	the	most	work	individually	as	per	the	overall	quantity	of	
commits	they	provide,	as	pertaining	to	the	scope	of	socio-metric	performance	prediction.	

	 37	

	

FIGURE	18	MORE	CLUSTERING	PATTERNS	FOR	CONTRIBUTORS	VERSUS	CONTRIBUTION	SIZES	

An	interesting	effect	here	is	the	visible	effect	of	the	Django	web	framework	being	developed	initially	by	
a	core	set	of	developers,	and	then	the	handover	of	the	project	to	the	Django	Software	Foundation	–	
resulting	in	the	dual	inverse-exponentiation	of	the	commits	versus	join	time	curve.	

	

FIGURE	19	AN	INTERESTING	EFFECT	OF	A	PROJECT	HANDOVER	BETWEEN	CORE	DEVELOPERS	

	 	

	 38	

ADOPTION	SNOWBALLING	V	COMPLEXITY	
The	snowballing	effect	of	open-source	repositories	follows	a	distinct	activation	function,	where	more	
contributors	 join	a	project	over	time	having	met	a	critical	mass	of	 interest	within	the	community	to	
spark	interest	in	contributing	to	the	project’s	goal.	As	overall	goal	of	open-source	software	is	for	a	piece	
of	software	to	make	a	real	difference	in	the	world,	it	is	a	place	for	many	novice	programmers	to	gain	
real-world	programming	experience	by	contributing	in	various	ways	to	support	a	cause.	As	later	joiners	
are	larger	in	number,	but	also	contribute	fewer	commits	overall;	many	of	these	changes	may	be	bug-
fixes	or	individual	changes	to	the	repository	to	facilitate	a	change	or	individual	improvement	to	make	
the	overall	system	work	better	overall,	such	as	refactoring	work.	

	

FIGURE	20	EXPONENTIAL	CONTRIBUTOR	JOIN	

Socio-metrically,	the	higher	the	number	of	collaborators	within	a	repository,	the	more	code	styles	and	
individual	traits	exist	within	the	mesh	of	code	developed	by	a	large	group	of	individuals.	As	the	number	
of	individuals	contributing	to	the	repository	increases,	the	code	base	matures	over	time,	and	evolves	
through	the	stages	of	repo	maturity.	Repositories	with	a	low	quantity	of	contributors	do	not	undergo	
the	 same	 evolution	 steps	 as	 larger	 repositories	 do.	 This	 infers	 that	 as	 more	 contributors	 join	 a	
repository,	 a	 generic	 code	 style	 as	 per	 the	 repository	 is	 developed	 across	 developers	 contributing	
towards	a	shared	goal.	

	 39	

	

FIGURE	21	A	STAGNATING	REPOSITORY	WITH	8	CONTRIBUTORS	

	

	

FIGURE	22	DIFFERING	JOIN	DISTRIBUTION	(MONGO)	

	 40	

	

FIGURE	23	ANOTHER	COLLABORATOR	JOIN	DISTRIBUTION	(EVE)	

	

STAGES	OF	REPO	COMPLEXITY	
Analysis	 over	 a	 wide	 array	 of	 mined	 repositories	 tends	 to	 show	 three	 distinct	 stages	 of	 projects	
undergoing	active	development:	young,	growing,	and	mature.	There	appears	to	be	a	sudden	drop	in	
complexity	and	then	a	 relatively	high	stability	when	the	repository	 reaches	a	 release,	once	 features	
have	been	implemented	at	the	software	has	become	generally	usable.	As	the	graph	below	shows,	there	
appears	to	be	a	“snowball”	effect	of	the	join	time	of	collaborators	to	a	code	base,	forming	an	almost	
negatively	 exponential	 curve	 in	 the	 quantity	 of	 commits	 per	 user	 joining	 as	 the	 repo	progresses	 in	
maturity	and	size.			

	

FIGURE	24	DISTINCT	AREAS	OF	DIFFERING	LOC	CHANGE	PER	MATURITY	LEVEL	

	 41	

There	are	many	interesting	properties	to	explore	in	the	development	of	a	repo.	Complexity	stagnates	
over	time	as	the	repo	ages	given	a	large	base	of	collaborators,	resulting	in	a	sudden	drop	in	complexity	
at	a	given	release.	The	LOC	of	code	added	from	this	point	onwards	to	the	repository	no	longer	spikes	
upwards	sharply	at	random	intervals,	and	 instead	tends	to	stay	at	the	same	level	over	time.	Once	a	
release	is	reached,	much	of	the	work	associated	with	new	joiners	is	associated	with	refactoring	work	
and	having	open	bugs	delegated	to	contributors;	rather	than	that	of	adding	new	features	to	the	project.		

	

FIGURE	25	DEMARCATED	MATURE	REPO	LEVEL	

Across	a	set	of	9	large	repositories	analysed	(cryptography,	tornado,	keras,	tweepy,	kivent,	flask,	treq,	
eve,	Pyrebase)	on	the	next	page,	all	 repositories	mined	underwent	three	general	stages	of	maturity	
with	a	notable	drop	in	complexity	between	45-65%	of	the	total	percentage	of	normalised	time.	These	
repositories	all	had	differing	run	times,	but	do	all	show	similar	progressions	in	complexities	over	time.	
Socio-metrically,	the	stages	associated	with	repositories	can	be	associated	with	the	differing	forms	of	
contributors	existing	at	each	individual	repository	stage	–	earlier	contributors	tending	to	work	on	major	
features,	later	contributors	focusing	on	minor	features,	bug	fixes,	and	refactoring;	while	documentation	
also	becomes	more	prevalent	throughout	the	project’s	life.		

	 42	

	

FI
G
U
RE

	2
6	
N
O
RM

AL
IS
ED

	C
O
M
PL
EX

IT
IE
S	
O
VE

R	
TI
M
E	
AC

RO
SS
	9
	R
EP

O
SI
TO

RI
ES
	

	

	 43	

SLOC	V	COMPLEXITY	
A	common	trait	across	the	most	frequent	overall	collaborators	in	a	repository	is	that	they	tend	to	add	
the	most	 overall	 lines	 of	 code	 with	 respect	 to	 the	 lowest	 overall	 summation	 of	 changes	 between	
commits.	 The	 general	 trend	 is	 that	 the	most	 exposure	 an	 individual	 has	 towards	 a	 code	 base,	 the	
complexity	 change	 they	 demonstrate	 overall	 is	 lower	 than	 that	 of	 newer	 collaborators	 with	 fewer	
commits	given	less	overall	exposure	over	time.	While	this	pattern	can	be	seen	throughout	repositories	
for	the	major	contributors,	there	doesn’t	appear	to	be	a	pattern	for	other	smaller	contributors.		

	

	

FIGURE	27	HIGHEST	CONTRIBUTOR	FROM	JOIN	TIME	APPEARING	IN	THE	BOTTOM	RIGHT	

	

Complexity,	SLOC	and	churn	are	related	to	one	another	through	relative	complexity	changes	within	a	
repository.	High	amounts	of	churn	give	a	high	variability	in	complexity	and	stability.	High	amounts	of	
churn	can	indicate	uncertainty	about	requirements,	or	a	highly	volatile	code	base.	There	is	less	activity	
over	time	as	features	get	implemented	and	the	project	reaches	the	end	of	the	development	cycle;	and	
major	development	work	gets	more	replaced	by	maintenance,	refactoring,	and	bug	fixes.	

It	appears	that	this	overall	summation	of	differences	between	commits	that	a	collaborator	contributes	
to	the	code	base	and	the	aggregation	of	lines	of	code	change	to	the	overall	repository,	corresponds	
with	 the	general	properties	of	 the	maintainability	 that	a	contributor	provides	 for	 its	 stability.	 Socio-
metrically,	this	infers	that	an	individual	is	providing	large	amounts	of	contributions	to	software	lines	of	
code,	while	minimising	the	impact	of	adding	additional	complexities	to	the	repository.	On	a	team	scope	
of	socio-metric	performance,	the	greatest	contributors	as	per	the	join	time	with	respect	to	commits	
are	always	situated	towards	the	bottom	right	of	the	graph.	Unfortunately,	there	appears	to	not	be	other	
standard	distribution	for	other	less	active	contributors	visible	directly	inferred	across	repositories.	

	 44	

	

FIGURE	28	TWO	HIGHEST	CONTRIBUTORS	FROM	JOIN	TIME	IN	THE	BOTTOM	RIGHT	

	

	

FIGURE	29	HIGHEST	CONTRIBUTOR	FROM	JOIN	TIME	IN	THE	BOTTOM	RIGHT	

	

	 	

	 45	

CONCLUSION	AND	FUTURE	WORK	

INTENDED	END-USER	
On	 a	wider	 scope,	 the	 intended	 end-user	 for	 this	 platform	would	 be	 a	 data	 scientist	 interested	 in	
generating	metrics	about	 the	effects	and	state	of	a	 team	of	developers	within	an	organisation.	The	
platform	itself	could	be	integrated	as	part	of	a	continuous	system	on	a	server	in	tandem	with	observing	
the	build	quality	like	implementations	such	as	Jenkins,	or	on	a	wider	scope,	and	be	run	over	large	data	
sets	to	compare	generalisations	of	software	development	to	the	given	development	team	aggregated	
over	 huge	 amounts	 of	 GitHub	 repositories.	 Metrics	 observed	 from	 the	 system	 infer	 that	 certain	
behaviours	result	from	given	engagements	and	generalise	over	large	data	sets	over	time.	

RISK	FACTORS		
Verification	techniques	for	this	remain	as	a	risk	factor,	due	to	the	lack	of	statistical	analysis	and	formality	
used	 within	 the	 scope	 of	 automation.	 Efforts	 in	 this	 project	 are	 based	 on	 the	 nature	 of	 software	
engineering	–	basing	assertions	on	visualisations	obtained	through	exploration	of	metrics,	and	looking	
generically	into	applications	through	it.	It	should	be	noted	that	there	are	varying	degrees	of	software	
repositories	that	are	used	in	different	ways:	some	gradually	for	building	projects,	some	as	a	collection	
of	exercises,	some	pushing	an	already	finished	project	as	a	reference,	and	many	other	mixtures.	

In	addition	to	this,	work	done	within	the	field	is	based	on	only	a	representative	sample	of	data	volumes	
obtained	from	digesting	software	repositories.	For	these	findings	to	become	more	concrete,	an	analysis	
using	a	web	crawler	would	have	to	be	run	over	a	very	large	amount	of	repository	data	sets.	Given	this,	
running	a	suite	of	statistical	analysis	tools	over	a	large	collection	of	repositories	via	a	web	crawler	would	
result	in	data	models	being	generated	on	a	much	more	accurate	and	generalised	scope.	As	the	sample	
size	for	this	project	was	below	25,	the	results	ascertained	from	here	must	be	run	over	a	much	larger	
sample	size	to	see	if	the	properties	generalise	across	varying	projects.		

Given	that	there	are	over	26	million	users	of	GitHub	alone,	and	excess	of	57	million	repositories	(GitHub,	
2017);	 the	 next	 logical	 step	 for	 statistical	 certainty	 and	 verification	 within	 the	 realm	 of	 software	
engineering	is	to	expand	the	project	by	building	a	web	crawler	for	running	analysis	across	huge	data-
sets	 of	 repositories.	However,	minimal	 statistical	 certainty	 for	 any	 repository	 generalisations	would	
require	a	sample	size	of	16,500	repositories	at	99%	significance	given	a	1%	margin	of	error	to	justify	
any	potential	relationships	and	generalisations	across	data-sets	at	scale.	Given	scaling,	a	generalisation	
of	 patterns	 observed	 can	 be	 explored	 in	 greater	 detail	 as	 part	 of	 qualitative	 research.	 It	 has	 been	
demonstrated	though	that	tool-set	is	possible	through	sets	of	engineering	challenges	portrayed	in	this	
project,	and	expansion	to	further	the	overall	goal	of	scale	requires	further	development	for	 it	 to	be	
possible	to	obtain	larger	data	sets.	

In	any	case,	there	is	an	extremely	high	dimensionality	associated	with	software	repository	meta	data	in	
accordance	 with	 engineering.	 The	 repercussion	 of	 this	 is	 that	 data-sets	 may	 be	 too	 complex	 to	
accurately	define	correlations,	and	may	inevitably	have	too	many	correlations	may	exist	between	data	
sets	for	a	researcher	to	accurately	deal	with.	

FUTURE	WORK	
There	is	a	share	of	worthwhile	consideration	of	consider	for	future	work	within	the	scope	of	this	field	
and	 project.	 It	 was	 to	 the	 best	 of	 the	 author’s	 knowledge	 given	 the	 time	 of	 planning	 and	

	 46	

implementation,	with	only	a	given	amount	of	experience	within	the	creation	and	deployment	of	such	a	
system	as	mentioned	below.	

VERIFICATION	TECHNIQUES	
Section	2	outlined	that	the	statistical	analysis	for	this	project	was	based	primarily	upon	drawing	upon	a	
wealth	of	 literature	given	exploratory	 techniques	between	various	derived	metrics	 as	per	Halstead,	
McCabe	and	Maintainability	Index.	There	is	a	potential	to	expand	on	these	known	paradigms	of	metric	
generation	and	provide	more	meaningful	insights	and	generate	further	validity.		

Efforts	 have	 been	 focused	 primarily	 on	 human-code	 socio-metrics	 not	 strictly	 tied	 to	 a	 certain	
paradigm.	In	the	future,	further	work	to	be	completed	may	pertain	to	examining	the	effects	of	various	
code	paradigms	on	the	overall	relative	complexity	within	a	software	repository	in	addition	to	the	effects	
of	modularity	and	language-specific	contexts.	The	tool-chain	should	be	expanded	upon,	and	build	upon	
literature	of	modular	and	non-modular	designs	with	the	effects	of	 fan-in	and	fan-out	on	the	overall	
complexity	–	such	as	object-oriented,	functional,	symbolic,	and	procedural	to	name	a	few.	

CONCLUSION	
The	overall	aim	of	the	project	was	to	design	and	implement	a	suite	of	tools	to	allow	and	satisfy	the	
design	goals	of	exploring	human-code	metrics	as	defined	in	chapter	2.	The	system	as	per	the	tool-chain	
satisfied	all	pre-conditions	objectives	for	experimentation	of	socio-metric	code	analysis	as	defined	in	
chapter	 1.	 The	 toolchain	 has	 also	 succeeded	 in	 pertaining	 to	 the	 preconditions	 as	 per	 observed	
repository	complexity,	contribution	effects	and	differences	between	collaborator	efforts,	 join	 times,	
and	the	outcome	of	ranking	the	individual	efforts	of	an	individual	towards	the	overall	scope	of	the	open-
source	 project’s	 goal	 as	 per	 chapters	 3	 and	 4,	 with	 further	 discussion	 in	 chapter	 5	 over	 a	 greater	
generalisation	of	project	sizes.	

It	 is	 interesting	 to	 compare	 the	 effects	 of	 varying	methodologies	 of	 quantifying	 and	 qualifying	 the	
individual	effects	of	a	collaborator’s	contributions	towards	a	repository	as	proposed	by	Halstead	and	
McCabe	 and	 contrast	 this	with	 the	 real-life	 observed	 complexities	 on	 a	wide	 range	of	 open-source	
projects	over	a	large	time	interval	with	real-life	developers.	

This	 project	 has	 explained	 the	 shortcomings	 of	 a	 relatively	 small	 data	 set,	 but	 has	 also	 uncovered	
interesting	metrics	 associated	with	 the	 long-term	development	practices.	 The	differences	observed	
between	project	contributor	sizes	is	also	an	interesting	metric	to	observe	the	changes	in	development	
styles	 according	 to	 the	 team	 size.	 It	 has	 been	 interesting	 to	 note	 the	 socio-metric	 performance	
differences	 between	 the	 aggregation	of	 project	 stages	 and	 complexities	 over	 time	 that	 follow	with	
larger	numbers	of	contributors	in	a	project	in	comparison.	Smaller	sized	projects	tend	not	to	undergo	
the	same	levels	of	maturity	and	agnosticism	of	style	meshing	over	time,	and	so	tend	not	to	reach	a	
complexity	stagnation	over	time.	

It	can	therefore	be	concluded	that	 the	advantages	of	analysing	repositories	 for	 team	and	 individual	
socio-metric	performance	metrics	can	be	further	investigated	to	reveal	more	in-depth	data	about	the	
trends	observed	within	a	repository,	and	reveal	the	true	traits	of	main	contributors	within	open-source	
software	repositories.	

	 	

	 47	

	

BIBLIOGRAPHY	
Atlassian,	n.d.	What	is	Git.	[Online]		
Available	at:	https://www.atlassian.com/git/tutorials/what-is-git	
[Accessed	27	April	2017].	

Booyabazooka,	2006.	Directed	graph.	graph	{	1	->	2;	2	->	1;	2	->	3;	3	->	2;	}.	[Online]		
Available	at:	https://upload.wikimedia.org/wikipedia/commons/a/a2/Directed.svg	
[Accessed	27	April	2017].	

Borysowich,	C.,	2007.	Design	Principles:	Fan-In	vs	Fan-Out.	[Online]		
Available	at:	http://it.toolbox.com/blogs/enterprise-solutions/design-principles-fanin-vs-fanout-16088	
[Accessed	27	April	2017].	

Celis,	I.,	2010.	Custom	event	emitters	in	Javascript.	[Online]		
Available	at:	https://robots.thoughtbot.com/custom-event-emitters-in-javascript	
[Accessed	27	April	2017].	

cirosantilli,	2016.	all-github-commit-emails.	[Online]		
Available	at:	https://github.com/cirosantilli/all-github-commit-emails	
[Accessed	27	April	2017].	

Cormen,	T.	H.,	Leiserson,	C.	E.,	Rivest,	R.	L.	&	Stein,	C.,	2001.	Introduction	to	Algorithms.	s.l.:MIT	Press	
and	McGraw-Hill.	

Dissanayake,	P.,	2014.	How	to	draw	a	Control	flow	graph	&	Cyclometric	complexity	for	a	given	
procedure.	[Online]		
Available	at:	https://geekdetected.files.wordpress.com/2013/03/untitled.jpg	
[Accessed	27	April	2017].	

ECMA,	2013.	The	JSON	Data	Interchange	Format.	[Online]		
Available	at:	http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf	
[Accessed	27	April	2017].	

Even,	S.,	2011.	Graph	Algorithms.	s.l.:Cambridge	University	Press.	

Fontana,	F.	A.,	Braione,	P.	&	Zanoni,	M.,	2011.	Automatic	detection	of	bad	smells	in	code:	An	
experimental	assessment.	Journal	of	Object	Technology,	11(2),	pp.	1-38.	

Freeman,	P.	&	Hart,	D.,	2004.	A	Science	of	Design	for	Software-Intensive	Systems.	Communications	of	
the	ACM,	8	August,	47(8),	pp.	19-21.	

GitHub,	2017.	Celebrating	nine	years	of	GitHub	with	an	anniversary	sale.	[Online]		
Available	at:	https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale	
[Accessed	27	April	2017].	

	 48	

GitHub,	2017.	How	we	share	the	information	we	collect.	[Online]		
Available	at:	https://help.github.com/articles/github-privacy-statement/#how-we-share-the-
information-we-collect	
[Accessed	27	April	2017].	

Goodrich,	M.	T.	&	Tamassia,	R.,	2001.	Algorithm	Design:	Foundations,	Analysis,	and	Internet	Examples.	
s.l.:Wiley.	

Google,	2016.	MVC	Architecture.	[Online]		
Available	at:	https://developer.chrome.com/static/images/mvc.png	
[Accessed	27	April	2017].	

Hakes,	T.,	2016.	GitHub	Exposes	Your	Personal	Email	Address.	[Online]		
Available	at:	https://taylorhakes.com/posts/get-any-github-users-email-address/	
[Accessed	27	April	2017].	

Halstead,	M.	H.,	1977.	Elements	of	Software	Science.	Amsterdam:	Elsevier	Science	Ltd.	

Harrison,	W.	A.,	1984.	Applying	McCabe's	complexity	measure	to	multiple-exit	programs.	s.l.:John	
WIley	&	Sons	Ltd.	

High	Scalability,	2016.	A	Beginner's	Guide	To	Scaling	To	11	Million+	Users	On	Amazon's	AWS.	[Online]		
Available	at:	http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-
users-on-amazons.html	
[Accessed	27	April	2017].	

IEEE,	1990.	610.12-1990	-	IEEE	Standard	Glossary	of	Software	Engineering	Terminology.	New	
York(New	York):	IEEE	Computer	Society	Press.	

McCabe,	T.	J.,	1983.	Structured	Testing.	s.l.:IEEE	Computer	Society	Press.	

Naboulsi,	Z.,	2011.	Code	Metrics	–	Maintainability	Index.	[Online]		
Available	at:	https://blogs.msdn.microsoft.com/zainnab/2011/05/26/code-metrics-maintainability-
index/	
[Accessed	27	April	2017].	

Nguyen,	V.,	Deeds-Rubin,	S.,	Tan,	T.	&	Boehm,	B.,	2007.	A	SLOC	Counting	Standard,	s.l.:	University	of	
Southern	California	.	

Paul,	R.,	2006.	Surveys	show	open	source	popularity	on	the	rise	in	industry.	[Online]		
Available	at:	https://arstechnica.com/uncategorized/2006/01/6017-2/	
[Accessed	27	April	2017].	

Podjarny,	G.,	2015.	Keeping	your	Open	Source	credentials	closed.	[Online]		
Available	at:	https://snyk.io/blog/leaked-credentials-in-packages/	
[Accessed	27	April	2017].	

	 49	

Radon,	n.d.	Introduction	to	Code	Metrics.	[Online]		
Available	at:	http://radon.readthedocs.io/en/latest/intro.html	
[Accessed	27	April	2017].	

Reenskaug,	T.	&	Coplien,	J.	O.,	2009.	The	DCI	Architecture:	A	New	Vision	of	Object-Oriented	
Programming.	[Online]		
Available	at:	http://www.artima.com/articles/dci_vision.html	
[Accessed	27	April	2017].	

Serebrenik,	A.,	2011.	Software	Evolution.	[Online]		
Available	at:	http://www.win.tue.nl/~aserebre/2IS55/2010-2011/10.pdf	
[Accessed	27	April	2017].	

Sink,	E.,	n.d.	Git:	Cryptographic	Hashes,	DVCS	Internals.	[Online]		
Available	at:	http://ericsink.com/vcbe/html/cryptographic_hashes.html	
[Accessed	27	April	2017].	

Thompson,	B.,	2016.	6	Causes	of	Code	Churn	and	What	to	Do	About	Them.	[Online]		
Available	at:	https://blog.gitprime.com/6-causes-of-code-churn-and-what-to-do	
[Accessed	27	April	2017].	

VerifySoft,	n.d.	Halstead	Metrics.	[Online]		
Available	at:	http://www.verifysoft.com/en_halstead_metrics.html	
[Accessed	27	April	2017].	

VirtualMachinery,	n.d.	The	Halstead	Metrics.	[Online]		
Available	at:	http://www.virtualmachinery.com/sidebar2.htm	
[Accessed	27	Apri	2017].	

Watson,	A.	H.	&	McCabe,	T.	J.,	1996.	Structured	Testing:	A	Testing	Methodology	Using	the	Cyclomatic	
Complexity	Metric.	Gaithersburg(Maryland):	NIST.	

	

	
	 	

